359 research outputs found

    A Comparative Evaluation of the Detection and Tracking Capability Between Novel Event-Based and Conventional Frame-Based Sensors

    Get PDF
    Traditional frame-based technology continues to suffer from motion blur, low dynamic range, speed limitations and high data storage requirements. Event-based sensors offer a potential solution to these challenges. This research centers around a comparative assessment of frame and event-based object detection and tracking. A basic frame-based algorithm is used to compare against two different event-based algorithms. First event-based pseudo-frames were parsed through standard frame-based algorithms and secondly, target tracks were constructed directly from filtered events. The findings show there is significant value in pursuing the technology further

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Vision-Based 2D and 3D Human Activity Recognition

    Get PDF

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Novel robust computer vision algorithms for micro autonomous systems

    Get PDF
    People detection and tracking are an essential component of many autonomous platforms, interactive systems and intelligent vehicles used in various search and rescues operations and similar humanitarian applications. Currently, researchers are focusing on the use of vision sensors such as cameras due to their advantages over other sensor types. Cameras are information rich, relatively inexpensive and easily available. Additionally, 3D information is obtained from stereo vision, or by triangulating over several frames in monocular configurations. Another method to obtain 3D data is by using RGB-D sensors (e.g. Kinect) that provide both image and depth data. This method is becoming more attractive over the past few years due to its affordable price and availability for researchers. The aim of this research was to find robust multi-target detection and tracking algorithms for Micro Autonomous Systems (MAS) that incorporate the use of the RGB-D sensor. Contributions include the discovery of novel robust computer vision algorithms. It proposed a new framework for human body detection, from video file, to detect a single person adapted from Viola and Jones framework. The 2D Multi Targets Detection and Tracking (MTDT) algorithm applied the Gaussian Mixture Model (GMM) to reduce noise in the pre-processing stage. Blob analysis was used to detect targets, and Kalman filter was used to track targets. The 3D MTDT extends beyond 2D with the use of depth data from the RGB-D sensor in the pre-processing stage. Bayesian model was employed to provide multiple cues. It includes detection of the upper body, face, skin colour, motion and shape. Kalman filter proved for speed and robustness of the track management. Simultaneous Localisation and Mapping (SLAM) fusing with 3D information was investigated. The new framework introduced front end and back end processing. The front end consists of localisation steps, post refinement and loop closing system. The back-end focus on the post-graph optimisation to eliminate errors.The proposed computer vision algorithms proved for better speed and robustness. The frameworks produced impressive results. New algorithms can be used to improve performances in real time applications including surveillance, vision navigation, environmental perception and vision-based control system on MAS

    Proceedings, MSVSCC 2016

    Get PDF
    Proceedings of the 10th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2016 at VMASC in Suffolk, Virginia

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Face tracking with active models for a driver monitoring application

    Get PDF
    La falta de atención durante la conducción es una de las principales causas de accidentes de tráfico. La \ud \ud monitorización del conductor para detectar inatención es un problema complejo, que incluye elementos fisiológicos y de \ud \ud comportamiento. Un sistema de Visión Computacional para detección de inatención se compone de varios etapas de procesado, y \ud \ud esta tesis se centra en el seguimiento de la cara del conductor. La tesis doctoral propone un nuevo conjunto de vídeos de \ud \ud conductores, grabados en un vehículo real y en dos simuladores realistas, que contienen la mayoría de los comportamientos \ud \ud presentes en la conducción, incluyendo gestos, giros de cabeza, interacción con el sistema de sonido y otras distracciones, \ud \ud y somnolencia. Esta base de datos, RS-DMV, se emplea para evaluar el rendimiento de los métodos que propone la tesis y \ud \ud otros del estado del arte. La tesis analiza el rendimiento de los Modelos Activos de Forma (ASM), y de los Modelos Locales \ud \ud Restringidos (CLM), por considerarlos a priori de interés. En concreto, se ha evaluado el método Stacked Trimmed ASM \ud \ud (STASM), que integra una serie de mejoras sobre el ASM original, mostrando una alta precisión en todas las pruebas cuando \ud \ud la cara es frontal a la cámara, si bien no funciona con la cara girada y su velocidad de ejecución es muy baja. CLM es \ud \ud capaz de ejecutarse con mayor rapidez, pero tiene una precisión mucho menor en todos los casos. El tercer método a evaluar \ud \ud es el Modelado y Seguimiento Simultáneo (SMAT), que caracteriza la forma y la textura de manera incremental, a partir de \ud \ud muestras encontradas previamente. La textura alrededor de cada punto de la forma que define la cara se modela mediante un \ud \ud conjunto de grupos (clusters) de muestras pasadas. El trabajo de tesis propone 3 métodos de clustering alternativos al \ud \ud original para la textura, y un modelo de forma entrenado off-line con una función de ajuste robusta. Los métodos \ud \ud alternativos propuestos obtienen una amplia mejora tanto en la precisión del seguimiento como en la robustez de éste frente \ud \ud a giros de cabeza, oclusiones, gestos y cambios de iluminación. Los métodos propuestos tienen, además, una baja carga \ud \ud computacional, y son capaces de ejecutarse a velocidades en torno a 100 imágenes por segundo en un computador de sobremesa

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot
    corecore