72 research outputs found

    Ultra-reliable Low-latency, Energy-efficient and Computing-centric Software Data Plane for Network Softwarization

    Get PDF
    Network softwarization plays a significantly important role in the development and deployment of the latest communication system for 5G and beyond. A more flexible and intelligent network architecture can be enabled to provide support for agile network management, rapid launch of innovative network services with much reduction in Capital Expense (CAPEX) and Operating Expense (OPEX). Despite these benefits, 5G system also raises unprecedented challenges as emerging machine-to-machine and human-to-machine communication use cases require Ultra-Reliable Low Latency Communication (URLLC). According to empirical measurements performed by the author of this dissertation on a practical testbed, State of the Art (STOA) technologies and systems are not able to achieve the one millisecond end-to-end latency requirement of the 5G standard on Commercial Off-The-Shelf (COTS) servers. This dissertation performs a comprehensive introduction to three innovative approaches that can be used to improve different aspects of the current software-driven network data plane. All three approaches are carefully designed, professionally implemented and rigorously evaluated. According to the measurement results, these novel approaches put forward the research in the design and implementation of ultra-reliable low-latency, energy-efficient and computing-first software data plane for 5G communication system and beyond

    On the design of a cost-efficient resource management framework for low latency applications

    Get PDF
    The ability to offer low latency communications is one of the critical design requirements for the upcoming 5G era. The current practice for achieving low latency is to overprovision network resources (e.g., bandwidth and computing resources). However, this approach is not cost-efficient, and cannot be applied in large-scale. To solve this, more cost-efficient resource management is required to dynamically and efficiently exploit network resources to guarantee low latencies. The advent of network virtualization provides novel opportunities in achieving cost-efficient low latency communications. It decouples network resources from physical machines through virtualization, and groups resources in the form of virtual machines (VMs). By doing so, network resources can be flexibly increased at any network locations through VM auto-scaling to alleviate network delays due to lack of resources. At the same time, the operational cost can be largely reduced by shutting down low-utilized VMs (e.g., energy saving). Also, network virtualization enables the emerging concept of mobile edge-computing, whereby VMs can be utilized to host low latency applications at the network edge to shorten communication latency. Despite these advantages provided by virtualization, a key challenge is the optimal resource management of different physical and virtual resources for low latency communications. This thesis addresses the challenge by deploying a novel cost-efficient resource management framework that aims to solve the cost-efficient design of 1) low latency communication infrastructures; 2) dynamic resource management for low latency applications; and 3) fault-tolerant resource management. Compared to the current practices, the proposed framework achieves 80% of deployment cost reduction for the design of low latency communication infrastructures; continuously saves up to 33% of operational cost through dynamic resource management while always achieving low latencies; and succeeds in providing fault tolerance to low latency communications with a guaranteed operational cost

    Performance Benchmarking of State-of-the-Art Software Switches for NFV

    Full text link
    With the ultimate goal of replacing proprietary hardware appliances with Virtual Network Functions (VNFs) implemented in software, Network Function Virtualization (NFV) has been gaining popularity in the past few years. Software switches route traffic between VNFs and physical Network Interface Cards (NICs). It is of paramount importance to compare the performance of different switch designs and architectures. In this paper, we propose a methodology to compare fairly and comprehensively the performance of software switches. We first explore the design spaces of seven state-of-the-art software switches and then compare their performance under four representative test scenarios. Each scenario corresponds to a specific case of routing NFV traffic between NICs and/or VNFs. In our experiments, we evaluate the throughput and latency between VNFs in two of the most popular virtualization environments, namely virtual machines (VMs) and containers. Our experimental results show that no single software switch prevails in all scenarios. It is, therefore, crucial to choose the most suitable solution for the given use case. At the same time, the presented results and analysis provide a deeper insight into the design tradeoffs and identifies potential performance bottlenecks that could inspire new designs.Comment: 17 page

    Gestion flexible des ressources dans les réseaux de nouvelle génération avec SDN

    Get PDF
    Abstract : 5G and beyond-5G/6G are expected to shape the future economic growth of multiple vertical industries by providing the network infrastructure required to enable innovation and new business models. They have the potential to offer a wide spectrum of services, namely higher data rates, ultra-low latency, and high reliability. To achieve their promises, 5G and beyond-5G/6G rely on software-defined networking (SDN), edge computing, and radio access network (RAN) slicing technologies. In this thesis, we aim to use SDN as a key enabler to enhance resource management in next-generation networks. SDN allows programmable management of edge computing resources and dynamic orchestration of RAN slicing. However, achieving efficient performance based on SDN capabilities is a challenging task due to the permanent fluctuations of traffic in next-generation networks and the diversified quality of service requirements of emerging applications. Toward our objective, we address the load balancing problem in distributed SDN architectures, and we optimize the RAN slicing of communication and computation resources in the edge of the network. In the first part of this thesis, we present a proactive approach to balance the load in a distributed SDN control plane using the data plane component migration mechanism. First, we propose prediction models that forecast the load of SDN controllers in the long term. By using these models, we can preemptively detect whether the load will be unbalanced in the control plane and, thus, schedule migration operations in advance. Second, we improve the migration operation performance by optimizing the tradeoff between a load balancing factor and the cost of migration operations. This proactive load balancing approach not only avoids SDN controllers from being overloaded, but also allows a judicious selection of which data plane component should be migrated and where the migration should happen. In the second part of this thesis, we propose two RAN slicing schemes that efficiently allocate the communication and the computation resources in the edge of the network. The first RAN slicing scheme performs the allocation of radio resource blocks (RBs) to end-users in two time-scales, namely in a large time-scale and in a small time-scale. In the large time-scale, an SDN controller allocates to each base station a number of RBs from a shared radio RBs pool, according to its requirements in terms of delay and data rate. In the short time-scale, each base station assigns its available resources to its end-users and requests, if needed, additional resources from adjacent base stations. The second RAN slicing scheme jointly allocates the RBs and computation resources available in edge computing servers based on an open RAN architecture. We develop, for the proposed RAN slicing schemes, reinforcement learning and deep reinforcement learning algorithms to dynamically allocate RAN resources.La 5G et au-delà de la 5G/6G sont censées dessiner la future croissance économique de multiples industries verticales en fournissant l'infrastructure réseau nécessaire pour permettre l'innovation et la création de nouveaux modèles économiques. Elles permettent d'offrir un large spectre de services, à savoir des débits de données plus élevés, une latence ultra-faible et une fiabilité élevée. Pour tenir leurs promesses, la 5G et au-delà de la-5G/6G s'appuient sur le réseau défini par logiciel (SDN), l’informatique en périphérie et le découpage du réseau d'accès (RAN). Dans cette thèse, nous visons à utiliser le SDN en tant qu'outil clé pour améliorer la gestion des ressources dans les réseaux de nouvelle génération. Le SDN permet une gestion programmable des ressources informatiques en périphérie et une orchestration dynamique de découpage du RAN. Cependant, atteindre une performance efficace en se basant sur le SDN est une tâche difficile due aux fluctuations permanentes du trafic dans les réseaux de nouvelle génération et aux exigences de qualité de service diversifiées des applications émergentes. Pour atteindre notre objectif, nous abordons le problème de l'équilibrage de charge dans les architectures SDN distribuées, et nous optimisons le découpage du RAN des ressources de communication et de calcul à la périphérie du réseau. Dans la première partie de cette thèse, nous présentons une approche proactive pour équilibrer la charge dans un plan de contrôle SDN distribué en utilisant le mécanisme de migration des composants du plan de données. Tout d'abord, nous proposons des modèles pour prédire la charge des contrôleurs SDN à long terme. En utilisant ces modèles, nous pouvons détecter de manière préemptive si la charge sera déséquilibrée dans le plan de contrôle et, ainsi, programmer des opérations de migration à l'avance. Ensuite, nous améliorons les performances des opérations de migration en optimisant le compromis entre un facteur d'équilibrage de charge et le coût des opérations de migration. Cette approche proactive d'équilibrage de charge permet non seulement d'éviter la surcharge des contrôleurs SDN, mais aussi de choisir judicieusement le composant du plan de données à migrer et l'endroit où la migration devrait avoir lieu. Dans la deuxième partie de cette thèse, nous proposons deux mécanismes de découpage du RAN qui allouent efficacement les ressources de communication et de calcul à la périphérie des réseaux. Le premier mécanisme de découpage du RAN effectue l'allocation des blocs de ressources radio (RBs) aux utilisateurs finaux en deux échelles de temps, à savoir dans une échelle de temps large et dans une échelle de temps courte. Dans l’échelle de temps large, un contrôleur SDN attribue à chaque station de base un certain nombre de RB à partir d'un pool de RB radio partagé, en fonction de ses besoins en termes de délai et de débit. Dans l’échelle de temps courte, chaque station de base attribue ses ressources disponibles à ses utilisateurs finaux et demande, si nécessaire, des ressources supplémentaires aux stations de base adjacentes. Le deuxième mécanisme de découpage du RAN alloue conjointement les RB et les ressources de calcul disponibles dans les serveurs de l’informatique en périphérie en se basant sur une architecture RAN ouverte. Nous développons, pour les mécanismes de découpage du RAN proposés, des algorithmes d'apprentissage par renforcement et d'apprentissage par renforcement profond pour allouer dynamiquement les ressources du RAN

    FloWatcher-DPDK: lightweight line-rate flow-level monitoring in software

    Get PDF
    In the last few years, several software-based solutions have been proved to be very efficient for high-speed packet processing, traffic generation and monitoring, and can be considered valid alternatives to expensive and non-flexible hardware-based solutions. In our work, we first benchmark heterogeneous design choices for software-based packet monitoring systems in terms of achievable performance and required resources (i.e., the number of CPU cores). Building on this extensive analysis we design FloWatcher-DPDK, a DPDK-based high-speed software traffic monitor we provide to the community as an open source project. In a nutshell, FloWatcher-DPDK provides tunable fine-grained statistics at packet and flow levels. Experimental results demonstrate that FloWatcher-DPDK sustains per-flow statistics with 5-nines precision at high-speed (e.g., 14.88 Mpps) using a limited amount of resources. Finally, we showcase the usage of FloWatcher-DPDK by configuring it to analyze the performance of two open source prototypes for stateful flow-level end-host and in-network packet processing

    PREDICTING INTERNET TRAFFIC BURSTS USING EXTREME VALUE THEORY

    Get PDF
    Computer networks play an important role in today’s organization and people life. These interconnected devices share a common medium and they tend to compete for it. Quality of Service (QoS) comes into play as to define what level of services users get. Accurately defining the QoS metrics is thus important. Bursts and serious deteriorations are omnipresent in Internet and considered as an important aspects of it. This thesis examines bursts and serious deteriorations in Internet traffic and applies Extreme Value Theory (EVT) to their prediction and modelling. EVT itself is a field of statistics that has been in application in fields like hydrology and finance, with only a recent introduction to the field of telecommunications. Model fitting is based on real traces from Belcore laboratory along with some simulated traces based on fractional Gaussian noise and linear fractional alpha stable motion. QoS traces from University of Napoli are also used in the prediction stage. Three methods from EVT are successfully used for the bursts prediction problem. They are Block Maxima (BM) method, Peaks Over Threshold (POT) method, and RLargest Order Statistics (RLOS) method. Bursts in internet traffic are predicted using the above three methods. A clear methodology was developed for the bursts prediction problem. New metrics for QoS are suggested based on Return Level and Return Period. Thus, robust QoS metrics can be defined. In turn, a superior QoS will be obtained that would support mission critical applications

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF
    corecore