121 research outputs found

    Multi-fidelity modelling approach for airline disruption management using simulation

    Get PDF
    Disruption to airline schedules is a key issue for the industry. There are various causes for disruption, ranging from weather events through to technical problems grounding aircraft. Delays can quickly propagate through a schedule, leading to high financial and reputational costs. Mitigating the impact of a disruption by adjusting the schedule is a high priority for the airlines. The problem involves rearranging aircraft, crew and passengers, often with large fleets and many uncertain elements. The multiple objectives, cost, delay and minimising schedule alterations, create a trade-off. In addition, the new schedule should be achievable without over-promising. This thesis considers the rescheduling of aircraft, the Aircraft Recovery Problem. The Aircraft Recovery Problem is well studied, though the literature mostly focusses on deterministic approaches, capable of modelling the complexity of the industry but with limited ability to capture the inherent uncertainty. Simulation offers a natural modelling framework, handling both the complexity and variability. However, the combinatorial aircraft allocation constraints are difficult for many simulation optimisation approaches, suggesting that a more tailored approach is required. This thesis proposes a two-stage multi-fidelity modelling approach, combining a low-fidelity Integer Program and a simulation. The deterministic Integer Program allocates aircraft to flights and gives an initial estimate of the delay of each flight. By solving in a multi-objective manner, it can quickly produce a set of promising solutions representing different trade-offs between disruption costs, total delay and the number of schedule alterations. The simulation is used to evaluate the candidate solutions and look for further local improvement. The aircraft allocation is fixed whilst a local search is performed over the flight delays, a continuous valued problem, aiming reduce costs. This is done by developing an adapted version of STRONG, a stochastic trust-region approach. The extension incorporates experimental design principles and projected gradient steps into STRONG to enable it to handle bound constraints. This method is demonstrated and evaluated with computational experiments on a set of disruptions with different fleet sizes and different numbers of disrupted aircraft. The results suggest that this multi-fidelity combination can produce good solutions to the Aircraft Recovery Problem. A more theoretical treatment of the extended trust-region simulation optimisation is also presented. The conditions under which a guarantee of the algorithm's asymptotic performance may be possible and a framework for proving these guarantees is presented. Some of the work towards this is discussed and we highlight where further work is required. This multi-fidelity approach could be used to implement a simulation-based decision support system for real-time disruption handling. The use of simulation for operational decisions raises the issue of how to evaluate a simulation-based tool and its predictions. It is argued that this is not a straightforward question of the real-world result being good or bad, as natural system variability can mask the results. This problem is formalised and a method is proposed for detecting systematic errors that could lead to poor decision making. The method is based on the Probability Integral Transformation using the simulation Empirical Cumulative Distribution Function and goodness of fit hypothesis tests for uniformity. This method is tested by applying it to the airline disruption problem previously discussed. Another simulation acts as a proxy real world, which deviates from the simulation in the runway service times. The results suggest that the method has high power when the deviations have a high impact on the performance measure of interest (more than 20%), but low power when the impact is less than 5%

    Current perspective of symbiotic organisms search technique in cloud computing environment: a review

    Get PDF
    Nature-inspired algorithms in computer science and engineering are algorithms that take their inspiration from living things and imitate their actions in order to construct functional models. The SOS algorithm (symbiotic organisms search) is a new promising metaheuristic algorithm. It is based on the symbiotic relationship that exists between different species in an ecosystem. Organisms develop symbiotic bonds like mutualism, commensalism, and parasitism to survive in their environment. Standard SOS has since been modified several times, either by hybridization or as better versions of the original algorithm. Most of these modifications came from engineering construction works and other discipline like medicine and finance. However, little improvement on the standard SOS has been noticed on its application in cloud computing environment, especially cloud task scheduling. As a result, this paper provides an overview of SOS applications in task scheduling problem and suggest a new enhanced method for better performance of the technique in terms of fast convergence speed

    Evolutionary computing techniques for handling variable interaction in engineering design optimisation

    Get PDF
    The ever-increasing market demands to produce better products, with reduced costs and lead times, has prompted the industry to look for rigorous ways of optimising its designs. However, the lack of flexibility and adequacy of existing optimisation techniques in dealing with the challenges of engineering design optimisation, has prevented the industry from using optimisation algorithms. The aim of this research is to explore the field of evolutionary computation for developing techniques that are capable of dealing with three features of engineering design optimisation problems: multiple objectives, constraints and variable interaction. An industry survey grounds the research within the industrial context. A literature survey of EC techniques for handling multiple objectives, constraints and variable interaction highlights a lack of techniques to handle variable interaction. This research, therefore, focuses on the development of techniques for handling variable interaction in the presence of multiple objectives and constraints. It attempts to fill this gap in research by formally defining and classifying variable interaction as inseparable function interaction and variable dependence. The research then proposes two new algorithms, GRGA and GAVD, that are respectively capable of handling these types of variable interaction. Since it is difficult to find a variety of real-life cases with required complexities, this research develops two test beds (RETB and RETB-II) that have the required features (multiple objectives, constraints and variable interaction), and enable controlled testing of optimisation algorithms. The performance of GRGA and GAVD is analysed and compared to the current state-of-the-art optimisation algorithm (NSGAII) using RETB, RETB-II and other ā€˜popularā€™ test problems. Finally, a set of real-life optimisation problems from literature are analysed from the point of variable interaction. The performance of GRGA and GAVD is finally validated using three appropriately chosen problems from this set. In this way, this research proposes a fully tested and validated methodology for dealing with engineering design optimisation problems with variable interaction.Ph
    • ā€¦
    corecore