19,376 research outputs found

    Differentially Coherent Code Acquisition in the MIMO-Aided Multi-Carrier DS-CDMA Downlink

    No full text
    Both differentially coherent and non-coherent code acquisition schemes designed for the multiple-input multiple-output (MIMO)-aided multi-carrier (MC)-DS-CDMA downlink are analysed, when communicating over uncorrelated Rayleigh channels. The attainable mean acquisition time (MAT) performance is studied as a function of both the number of multiple transmit/multiple receive antennas and that of the number of subcarriers. It is demonstrated that in contrast to the expectations, when the number of multiple transmit antennas and/or that of the subcarriers is increased in both the differentially coherent and the non-coherent code acquisition scenarios, the achievable MAT deteriorates over the entire signal-to-interference plus noise ratio (SINR) per chip (Ec/Io) range considered, except for the scenario of single-carrier (SC)-DS-CDMA using P ¼ 2 transmit antennas and R ¼ 1 receive antenna. As expected, the degree of performance degradation depends upon the specific scheme and the Ec/Io ratio considered, although paradoxically, the correctly synchronised MIMO-aided system is capable of attaining its target bit error ratio performance at reduced SINR values

    Analysis of Serial Search Based Code Acquisition in Multiple Transmit Antenna Aided DS-CDMA Downlink

    No full text
    In this contribution we investigate the serial search based initial code acquisition performance of DSCDMA employing multiple transmit antennas both with and without Post-Detection Integration (PDI), when communicating over uncorrelated Rayleigh channels. We characterise the associated performance trends as a function of the number of transmit antennas. It is demonstrated that in contrast to our expectation, the achievable correct detection probability PD degrades at low c o E /I values, as the number of transmit antennas is increased. It is extremely undesirable to degrade the achievable acquisition performance, when the system is capable of attaining its target bit error rate performance at reduced SINR values, as a benefit of employing multiple transmit antennas. Our future research will focus on the study of designing iterative turbo-like acquisition schemes designed for MIMO systems

    A template-based approach for the generation of abstractable and reducible models of featured networks

    Get PDF
    We investigate the relationship between symmetry reduction and inductive reasoning when applied to model checking networks of featured components. Popular reduction techniques for combatting state space explosion in model checking, like abstraction and symmetry reduction, can only be applied effectively when the natural symmetry of a system is not destroyed during specification. We introduce a property which ensures this is preserved, open symmetry. We describe a template-based approach for the construction of open symmetric Promela specifications of featured systems. For certain systems (safely featured parameterised systems) our generated specifications are suitable for conversion to abstract specifications representing any size of network. This enables feature interaction analysis to be carried out, via model checking and induction, for systems of any number of featured components. In addition, we show how, for any balanced network of components, by using a graphical representation of the features and the process communication structure, a group of permutations of the underlying state space of the generated specification can be determined easily. Due to the open symmetry of our Promela specifications, this group of permutations can be used directly for symmetry reduced model checking. The main contributions of this paper are an automatic method for developing open symmetric specifications which can be used for generic feature interaction analysis, and the novel application of symmetry detection and reduction in the context of model checking featured networks. We apply our techniques to a well known example of a featured network – an email system

    Liveness of Randomised Parameterised Systems under Arbitrary Schedulers (Technical Report)

    Full text link
    We consider the problem of verifying liveness for systems with a finite, but unbounded, number of processes, commonly known as parameterised systems. Typical examples of such systems include distributed protocols (e.g. for the dining philosopher problem). Unlike the case of verifying safety, proving liveness is still considered extremely challenging, especially in the presence of randomness in the system. In this paper we consider liveness under arbitrary (including unfair) schedulers, which is often considered a desirable property in the literature of self-stabilising systems. We introduce an automatic method of proving liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness as a two-player reachability game (between Scheduler and Process), our method is a CEGAR approach that synthesises a progress relation for Process that can be symbolically represented as a finite-state automaton. The method is incremental and exploits both Angluin-style L*-learning and SAT-solvers. Our experiments show that our algorithm is able to prove liveness automatically for well-known randomised distributed protocols, including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this is the first fully-automatic method that can prove liveness for randomised protocols.Comment: Full version of CAV'16 pape

    Learning to Prove Safety over Parameterised Concurrent Systems (Full Version)

    Full text link
    We revisit the classic problem of proving safety over parameterised concurrent systems, i.e., an infinite family of finite-state concurrent systems that are represented by some finite (symbolic) means. An example of such an infinite family is a dining philosopher protocol with any number n of processes (n being the parameter that defines the infinite family). Regular model checking is a well-known generic framework for modelling parameterised concurrent systems, where an infinite set of configurations (resp. transitions) is represented by a regular set (resp. regular transducer). Although verifying safety properties in the regular model checking framework is undecidable in general, many sophisticated semi-algorithms have been developed in the past fifteen years that can successfully prove safety in many practical instances. In this paper, we propose a simple solution to synthesise regular inductive invariants that makes use of Angluin's classic L* algorithm (and its variants). We provide a termination guarantee when the set of configurations reachable from a given set of initial configurations is regular. We have tested L* algorithm on standard (as well as new) examples in regular model checking including the dining philosopher protocol, the dining cryptographer protocol, and several mutual exclusion protocols (e.g. Bakery, Burns, Szymanski, and German). Our experiments show that, despite the simplicity of our solution, it can perform at least as well as existing semi-algorithms.Comment: Full version of FMCAD'17 pape

    Initial and Post-Initial Acquisition in the Serial Search Based Noncoherent Multiple Transmit/Receive Antenna Aided DS-CDMA Downlink

    No full text
    In this paper we investigate the issues of both initial and post-initial acquisition schemes in the multiple transmit/receive antenna aided DS-CDMA downlink, when communicating over uncorrelated Rayleigh channels. The associated Mean Acquisition Time (MAT) performance trends are characterised as a function of the number of transmit/receive antennas. Furthermore, we characterise both the initial and post-initial acquisition performance as a function of the relevant system parameters. It is demonstrated that in contrast to our expectations, the achievable MAT degrades at low Ec/Io values, except for the case of P = 2 transmit antennas operating in conjunction with R=1 receive antenna over the specific Signal-to-Interference plus Noise Ratio (SINR) per chip (Ec/Io) range considered, as the number of transmit antennas is increased. Ironically, our findings suggest that increasing the number of transmit antennas in a MIMO-aided CDMA system results in combining the low-energy, noise-contaminated signals of the transmit antennas, which ultimately increases the MAT by an order of magnitude, when the SINR is relatively low. This phenomenon has a detrimental effect on the performance of Rake receiver based synchronisation schemes, when the perfectly synchronised system is capable of attaining its target bit error rate performance at reduced SINR values, as a benefit of employing multiple transmit antennas. Therefore our future research will be focused on specifically designing acquisition schemes for MIMO systems

    Non-Coherent Code Acquisition in the Multiple Transmit/Multiple Receive Antenna Aided Single- and Multi-Carrier DS-CDMA Downlink

    No full text
    We analyse the characteristics of the Non-Coherent (NC) Multiple Transmit/Multiple Receive (MTMR) antenna aided Multi-Carrier (MC) DS-CDMA downlink employing a serial search based acquisition scheme, when communicating over spatially uncorrelated Rayleigh channels. The associated Mean Acquisition Time (MAT) performance trends are characterised as a function of both the number of antennas and that of the number of subcarriers. It is shown that the employment of both multiple transmit antennas and multiple subcarriers is typically detrimental in terms of the achievable NC acquisition performance, while that obtained by exploiting multiple receive antennas is always beneficial, regardless whether single-path or multi-path scenarios are considered. Based on our results justified by information theoretic considerations, our acquisition design guidelines are applicable to diverse NC MTMR antenna aided scenarios. Index Terms—MC-DS-CDMA, non-coherent, transmit/receive/ frequency diversity

    Searching for a Solution to Program Verification=Equation Solving in CCS

    Get PDF
    International audienceUnder non-exponential discounting, we develop a dynamic theory for stopping problems in continuous time. Our framework covers discount functions that induce decreasing impatience. Due to the inherent time inconsistency, we look for equilibrium stopping policies, formulated as fixed points of an operator. Under appropriate conditions, fixed-point iterations converge to equilibrium stopping policies. This iterative approach corresponds to the hierarchy of strategic reasoning in game theory and provides “agent-specific” results: it assigns one specific equilibrium stopping policy to each agent according to her initial behavior. In particular, it leads to a precise mathematical connection between the naive behavior and the sophisticated one. Our theory is illustrated in a real options model

    Improving Task-Parameterised Movement Learning Generalisation with Frame-Weighted Trajectory Generation

    Get PDF
    Learning from Demonstration depends on a robot learner generalising its learned model to unseen conditions, as it is not feasible for a person to provide a demonstration set that accounts for all possible variations in non-trivial tasks. While there are many learning methods that can handle interpolation of observed data effectively, extrapolation from observed data offers a much greater challenge. To address this problem of generalisation, this paper proposes a modified Task-Parameterised Gaussian Mixture Regression method that considers the relevance of task parameters during trajectory generation, as determined by variance in the data. The benefits of the proposed method are first explored using a simulated reaching task data set. Here it is shown that the proposed method offers far-reaching, low-error extrapolation abilities that are different in nature to existing learning methods. Data collected from novice users for a real-world manipulation task is then considered, where it is shown that the proposed method is able to effectively reduce grasping performance errors by 30%{\sim30\%} and extrapolate to unseen grasp targets under real-world conditions. These results indicate the proposed method serves to benefit novice users by placing less reliance on the user to provide high quality demonstration data sets.Comment: 8 pages, 6 figures, submitted to 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
    corecore