2,103 research outputs found

    A Detailed Investigation into Low-Level Feature Detection in Spectrogram Images

    Get PDF
    Being the first stage of analysis within an image, low-level feature detection is a crucial step in the image analysis process and, as such, deserves suitable attention. This paper presents a systematic investigation into low-level feature detection in spectrogram images. The result of which is the identification of frequency tracks. Analysis of the literature identifies different strategies for accomplishing low-level feature detection. Nevertheless, the advantages and disadvantages of each are not explicitly investigated. Three model-based detection strategies are outlined, each extracting an increasing amount of information from the spectrogram, and, through ROC analysis, it is shown that at increasing levels of extraction the detection rates increase. Nevertheless, further investigation suggests that model-based detection has a limitation—it is not computationally feasible to fully evaluate the model of even a simple sinusoidal track. Therefore, alternative approaches, such as dimensionality reduction, are investigated to reduce the complex search space. It is shown that, if carefully selected, these techniques can approach the detection rates of model-based strategies that perform the same level of information extraction. The implementations used to derive the results presented within this paper are available online from http://stdetect.googlecode.com

    Comparing the Online Learning Capabilities of Gaussian ARTMAP and Fuzzy ARTMAP for Building Energy Management Systems

    Get PDF
    Recently, there has been a growing interest in the application of Fuzzy ARTMAP for use in building energy management systems or EMS. However, a number of papers have indicated that there are important weaknesses to the Fuzzy ARTMAP approach, such as sensitivity to noisy data and category proliferation. Gaussian ARTMAP was developed to help overcome these weaknesses, raising the question of whether Gaussian ARTMAP could be a more effective approach for building energy management systems? This paper aims to answer this question. In particular, our results show that Gaussian ARTMAP not only has the capability to address the weaknesses of Fuzzy ARTMAP but, by doing this, provides better and more efficient EMS controls with online learning capabilities

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Self Organisation and Hierarchical Concept Representation in Networks of Spiking Neurons

    Get PDF
    The aim of this work is to introduce modular processing mechanisms for cortical functions implemented in networks of spiking neurons. Neural maps are a feature of cortical processing found to be generic throughout sensory cortical areas, and self-organisation to the fundamental properties of input spike trains has been shown to be an important property of cortical organisation. Additionally, oscillatory behaviour, temporal coding of information, and learning through spike timing dependent plasticity are all frequently observed in the cortex. The traditional self-organising map (SOM) algorithm attempts to capture the computational properties of this cortical self-organisation in a neural network. As such, a cognitive module for a spiking SOM using oscillations, phasic coding and STDP has been implemented. This model is capable of mapping to distributions of input data in a manner consistent with the traditional SOM algorithm, and of categorising generic input data sets. Higher-level cortical processing areas appear to feature a hierarchical category structure that is founded on a feature-based object representation. The spiking SOM model is therefore extended to facilitate input patterns in the form of sets of binary feature-object relations, such as those seen in the field of formal concept analysis. It is demonstrated that this extended model is capable of learning to represent the hierarchical conceptual structure of an input data set using the existing learning scheme. Furthermore, manipulations of network parameters allow the level of hierarchy used for either learning or recall to be adjusted, and the network is capable of learning comparable representations when trained with incomplete input patterns. Together these two modules provide related approaches to the generation of both topographic mapping and hierarchical representation of input spaces that can be potentially combined and used as the basis for advanced spiking neuron models of the learning of complex representations

    Annotate and retrieve in vivo images using hybrid self-organizing map

    Get PDF
    Multimodal retrieval has gained much attention lately due to its effectiveness over uni-modal retrieval. For instance, visual features often under-constrain the description of an image in content-based retrieval; however, another modality, such as collateral text, can be introduced to abridge the semantic gap and make the retrieval process more efficient. This article proposes the application of cross-modal fusion and retrieval on real in vivo gastrointestinal images and linguistic cues, as the visual features alone are insufficient for image description and to assist gastroenterologists. So, a cross-modal information retrieval approach has been proposed to retrieve related images given text and vice versa while handling the heterogeneity gap issue among the modalities. The technique comprises two stages: (1) individual modality feature learning; and (2) fusion of two trained networks. In the first stage, two self-organizing maps (SOMs) are trained separately using images and texts, which are clustered in the respective SOMs based on their similarity. In the second (fusion) stage, the trained SOMs are integrated using an associative network to enable cross-modal retrieval. The underlying learning techniques of the associative network include Hebbian learning and Oja learning (Improved Hebbian learning). The introduced framework can annotate images with keywords and illustrate keywords with images, and it can also be extended to incorporate more diverse modalities. Extensive experimentation has been performed on real gastrointestinal images obtained from a known gastroenterologist that have collateral keywords with each image. The obtained results proved the efficacy of the algorithm and its significance in aiding gastroenterologists in quick and pertinent decision making

    Data mining using intelligent systems : an optimized weighted fuzzy decision tree approach

    Get PDF
    Data mining can be said to have the aim to analyze the observational datasets to find relationships and to present the data in ways that are both understandable and useful. In this thesis, some existing intelligent systems techniques such as Self-Organizing Map, Fuzzy C-means and decision tree are used to analyze several datasets. The techniques are used to provide flexible information processing capability for handling real-life situations. This thesis is concerned with the design, implementation, testing and application of these techniques to those datasets. The thesis also introduces a hybrid intelligent systems technique: Optimized Weighted Fuzzy Decision Tree (OWFDT) with the aim of improving Fuzzy Decision Trees (FDT) and solving practical problems. This thesis first proposes an optimized weighted fuzzy decision tree, incorporating the introduction of Fuzzy C-Means to fuzzify the input instances but keeping the expected labels crisp. This leads to a different output layer activation function and weight connection in the neural network (NN) structure obtained by mapping the FDT to the NN. A momentum term was also introduced into the learning process to train the weight connections to avoid oscillation or divergence. A new reasoning mechanism has been also proposed to combine the constructed tree with those weights which had been optimized in the learning process. This thesis also makes a comparison between the OWFDT and two benchmark algorithms, Fuzzy ID3 and weighted FDT. SIx datasets ranging from material science to medical and civil engineering were introduced as case study applications. These datasets involve classification of composite material failure mechanism, classification of electrocorticography (ECoG)/Electroencephalogram (EEG) signals, eye bacteria prediction and wave overtopping prediction. Different intelligent systems techniques were used to cluster the patterns and predict the classes although OWFDT was used to design classifiers for all the datasets. In the material dataset, Self-Organizing Map and Fuzzy C-Means were used to cluster the acoustic event signals and classify those events to different failure mechanism, after the classification, OWFDT was introduced to design a classifier in an attempt to classify acoustic event signals. For the eye bacteria dataset, we use the bagging technique to improve the classification accuracy of Multilayer Perceptrons and Decision Trees. Bootstrap aggregating (bagging) to Decision Tree also helped to select those most important sensors (features) so that the dimension of the data could be reduced. Those features which were most important were used to grow the OWFDT and the curse of dimensionality problem could be solved using this approach. The last dataset, which is concerned with wave overtopping, was used to benchmark OWFDT with some other Intelligent Systems techniques, such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Evolving Fuzzy Neural Network (EFuNN), Genetic Neural Mathematical Method (GNMM) and Fuzzy ARTMAP. Through analyzing these datasets using these Intelligent Systems Techniques, it has been shown that patterns and classes can be found or can be classified through combining those techniques together. OWFDT has also demonstrated its efficiency and effectiveness as compared with a conventional fuzzy Decision Tree and weighted fuzzy Decision Tree

    A biologically inspired recurrent neural network for sound source recognition incorporating auditory attention

    Get PDF
    In this paper, a human-mimicking model for sound source recognition is presented. It consists of an artificial neural network with three neuron layers (input, middle and output) that are connected by feedback connections between the output and middle layer, on top of feedforward connections from the input to middle and middle to output layers. Learning is accomplished by the model following the Hebb principle, dictating that " cells that fire together, wire together", with some important alterations, compared to standard Hebbian learning, in order to prevent the model from forgetting previously learned patterns, when learning new ones. In addition, short-term memory is introduced into the model in order to facilitate and guide learning of neuronal synapses (long-term memory). As auditory attention is an essential part of human auditory scene analysis (ASA), it is also indispensable in any computational model mimicking it, and it is shown that different auditory attention mechanism naturally emerge from the neuronal behaviour as implemented in the model described in this paper. The learning behavior of the model is further investigated in the context of an urban sonic environment, and the importance of shortterm memory in this process is demonstrated. Finally, the effectiveness of the model is evaluated by comparing model output on presented sound recordings to a human expert listeners evaluation of the same fragments
    • …
    corecore