134 research outputs found

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    iC2mpi: A Platform for Parallel Execution of Graph-Structured Iterative Computations

    Get PDF
    Parallelization of sequential programs is often daunting because of the substantial development cost involved. Various solutions have been proposed to address this concern, including directive-based approaches and parallelization platforms. These solutions have not always been successful, in part because many try to address all types of applications. We propose a platform for parallelization of a class of applications that have similar computational structure, namely graph-structured iterative applications. iC2mpi is a unique proof-of-concept prototype platform that provides relatively easy parallelization of existing sequential programs and facilitates experimentation with static partitioning and dynamic load balancing schemes. We demonstrate with various generic application graph topologies and an existing application, namely a time-stepped battlefield management simulation, that our platform can produce good performance with very little effort

    Jet: Multilevel Graph Partitioning on GPUs

    Full text link
    The multilevel heuristic is the dominant strategy for high-quality sequential and parallel graph partitioning. Partition refinement is a key step of multilevel graph partitioning. In this work, we present Jet, a new parallel algorithm for partition refinement specifically designed for Graphics Processing Units (GPUs). We combine Jet with GPU-aware coarsening to develop a kk-way graph partitioner. The new partitioner achieves superior quality when compared to state-of-the-art shared memory graph partitioners on a large collection of test graphs.Comment: Submitted as a non-archival track paper for SIAM ACDA 202

    Efficient Scheduling and High-Performance Graph Partitioning on Heterogeneous CPU-GPU Systems

    Get PDF
    Heterogeneous CPU-GPU systems have emerged as a power-efficient platform for high performance parallelization of the applications. However, effectively exploiting these architectures faces a number of challenges including differences in the programming models of the CPU (MIMD) and the GPU (SIMD), GPU memory constraints, and comparatively low communication bandwidth between the CPU and GPU. As a consequence, high performance execution of applications on these platforms requires designing new adaptive parallelizing methods. In this thesis, first we explore embarrassingly parallel applications where tasks have no inter-dependencies. Although the massive processing power of GPUs provides an attractive opportunity for high-performance execution of embarrassingly parallel tasks on CPU-GPU systems, minimized execution time can only be obtained by optimally distributing the tasks between the processors. In contemporary CPU-GPU systems, the scheduler cannot decide about the appropriate rate distribution. Hence it requires high programming effort to manually divide the tasks among the processors. Herein, we design and implement a new dynamic scheduling heuristic to minimize the execution time of embarrassingly parallel applications on a heterogeneous CPU-GPU system. The scheduler is integrated into a scheduling framework that provides pre-implemented automated scheduling modules, liberating the user from the complexities of scheduling details. The experimental results show that our scheduling approach achieves better to similar performance compared to some of the scheduling algorithms proposed for CPU-GPU systems. We then investigate task dependent applications, where the tasks have data dependencies. The computational tasks and their communication patterns are expressed by a task interaction graph. Scheduling of the task interaction graph on a cluster can be done by first partitioning the graph into a set of computationally balanced partitions in such a way that the communication cost among the partitions is minimized, and subsequently mapping the partitions onto physical processors. Aside from scheduling, graph partitioning is a common computation phase in many application domains, including social network analysis, data mining, and VLSI design. However, irregular and data-dependent graph partitioning sub-tasks pose multiple challenges for efficient GPU utilization, which favors regularity. We design and implement a multilevel graph partitioner on a heterogeneous CPU-GPU system that takes advantage of the high parallel processing power of GPUs by executing the computation-intensive parts of the partitioning sub-tasks on the GPU and assigning the parts with less parallelism to the CPU. Our partitioner aims to overcome some of the challenges arising due to the irregular nature of the algorithm, and memory constraints on GPUs. We present a lock-free scheme since fine-grained synchronization among thousands of GPU threads imposes too high a performance overhead. Experimental results demonstrate that our partitioner outperforms serial and parallel MPI-based partitioners. It performs similar to shared-memory CPU-based parallel graph partitioner. To optimize the graph partitioner performance, we describe an effective and methodological approach to enable a GPU-based multi-level graph partitioning that is tailored specifically for the SIMD architecture. Our solution avoids thread divergence and balances the load over GPU threads by dynamically assigning an appropriate number of threads to process the graph vertices and irregular sized neighbors. Our optimized design is autonomous as all the steps are carried out by the GPU with minimal CPU interference. We show that this design outperforms CPU-based parallel graph partitioner. Finally, we apply some of our partitioning techniques to another graph processing algorithm, minimum spanning tree (MST), that exhibits load imbalance characteristics. We show that extending these techniques helps in achieving a high performance implementation of MST on the GPU

    Domain decomposition and locality optimization for large-scale lattice Boltzmann simulations

    Full text link
    We present a simple, parallel and distributed algorithm for setting up and partitioning a sparse representation of a regular discretized simulation domain. This method is scalable for a large number of processes even for complex geometries and ensures load balance between the domains, reasonable communication interfaces, and good data locality within the domain. Applying this scheme to a list-based lattice Boltzmann flow solver can achieve similar or even higher flow solver performance than widely used standard graph partition based tools such as METIS and PT-SCOTCH

    Parallel and Flow-Based High Quality Hypergraph Partitioning

    Get PDF
    Balanced hypergraph partitioning is a classic NP-hard optimization problem that is a fundamental tool in such diverse disciplines as VLSI circuit design, route planning, sharding distributed databases, optimizing communication volume in parallel computing, and accelerating the simulation of quantum circuits. Given a hypergraph and an integer kk, the task is to divide the vertices into kk disjoint blocks with bounded size, while minimizing an objective function on the hyperedges that span multiple blocks. In this dissertation we consider the most commonly used objective, the connectivity metric, where we aim to minimize the number of different blocks connected by each hyperedge. The most successful heuristic for balanced partitioning is the multilevel approach, which consists of three phases. In the coarsening phase, vertex clusters are contracted to obtain a sequence of structurally similar but successively smaller hypergraphs. Once sufficiently small, an initial partition is computed. Lastly, the contractions are successively undone in reverse order, and an iterative improvement algorithm is employed to refine the projected partition on each level. An important aspect in designing practical heuristics for optimization problems is the trade-off between solution quality and running time. The appropriate trade-off depends on the specific application, the size of the data sets, and the computational resources available to solve the problem. Existing algorithms are either slow, sequential and offer high solution quality, or are simple, fast, easy to parallelize, and offer low quality. While this trade-off cannot be avoided entirely, our goal is to close the gaps as much as possible. We achieve this by improving the state of the art in all non-trivial areas of the trade-off landscape with only a few techniques, but employed in two different ways. Furthermore, most research on parallelization has focused on distributed memory, which neglects the greater flexibility of shared-memory algorithms and the wide availability of commodity multi-core machines. In this thesis, we therefore design and revisit fundamental techniques for each phase of the multilevel approach, and develop highly efficient shared-memory parallel implementations thereof. We consider two iterative improvement algorithms, one based on the Fiduccia-Mattheyses (FM) heuristic, and one based on label propagation. For these, we propose a variety of techniques to improve the accuracy of gains when moving vertices in parallel, as well as low-level algorithmic improvements. For coarsening, we present a parallel variant of greedy agglomerative clustering with a novel method to resolve cluster join conflicts on-the-fly. Combined with a preprocessing phase for coarsening based on community detection, a portfolio of from-scratch partitioning algorithms, as well as recursive partitioning with work-stealing, we obtain our first parallel multilevel framework. It is the fastest partitioner known, and achieves medium-high quality, beating all parallel partitioners, and is close to the highest quality sequential partitioner. Our second contribution is a parallelization of an n-level approach, where only one vertex is contracted and uncontracted on each level. This extreme approach aims at high solution quality via very fine-grained, localized refinement, but seems inherently sequential. We devise an asynchronous n-level coarsening scheme based on a hierarchical decomposition of the contractions, as well as a batch-synchronous uncoarsening, and later fully asynchronous uncoarsening. In addition, we adapt our refinement algorithms, and also use the preprocessing and portfolio. This scheme is highly scalable, and achieves the same quality as the highest quality sequential partitioner (which is based on the same components), but is of course slower than our first framework due to fine-grained uncoarsening. The last ingredient for high quality is an iterative improvement algorithm based on maximum flows. In the sequential setting, we first improve an existing idea by solving incremental maximum flow problems, which leads to smaller cuts and is faster due to engineering efforts. Subsequently, we parallelize the maximum flow algorithm and schedule refinements in parallel. Beyond the strive for highest quality, we present a deterministically parallel partitioning framework. We develop deterministic versions of the preprocessing, coarsening, and label propagation refinement. Experimentally, we demonstrate that the penalties for determinism in terms of partition quality and running time are very small. All of our claims are validated through extensive experiments, comparing our algorithms with state-of-the-art solvers on large and diverse benchmark sets. To foster further research, we make our contributions available in our open-source framework Mt-KaHyPar. While it seems inevitable, that with ever increasing problem sizes, we must transition to distributed memory algorithms, the study of shared-memory techniques is not in vain. With the multilevel approach, even the inherently slow techniques have a role to play in fast systems, as they can be employed to boost quality on coarse levels at little expense. Similarly, techniques for shared-memory parallelism are important, both as soon as a coarse graph fits into memory, and as local building blocks in the distributed algorithm

    High-Performance Computing: Dos and Don’ts

    Get PDF
    Computational fluid dynamics (CFD) is the main field of computational mechanics that has historically benefited from advances in high-performance computing. High-performance computing involves several techniques to make a simulation efficient and fast, such as distributed memory parallelism, shared memory parallelism, vectorization, memory access optimizations, etc. As an introduction, we present the anatomy of supercomputers, with special emphasis on HPC aspects relevant to CFD. Then, we develop some of the HPC concepts and numerical techniques applied to the complete CFD simulation framework: from preprocess (meshing) to postprocess (visualization) through the simulation itself (assembly and iterative solvers)

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study
    • …
    corecore