39 research outputs found

    IPAD 2: Advances in Distributed Data Base Management for CAD/CAM

    Get PDF
    The Integrated Programs for Aerospace-Vehicle Design (IPAD) Project objective is to improve engineering productivity through better use of computer-aided design and manufacturing (CAD/CAM) technology. The focus is on development of technology and associated software for integrated company-wide management of engineering information. The objectives of this conference are as follows: to provide a greater awareness of the critical need by U.S. industry for advancements in distributed CAD/CAM data management capability; to present industry experiences and current and planned research in distributed data base management; and to summarize IPAD data management contributions and their impact on U.S. industry and computer hardware and software vendors

    WEST-3 wind turbine simulator development

    Get PDF
    The software developed for WEST-3, a new, all digital, and fully programmable wind turbine simulator is given. The process of wind turbine simulation on WEST-3 is described in detail. The major steps are, the processing of the mathematical models, the preparation of the constant data, and the use of system software generated executable code for running on WEST-3. The mechanics of reformulation, normalization, and scaling of the mathematical models is discussed in detail, in particulr, the significance of reformulation which leads to accurate simulations. Descriptions for the preprocessor computer programs which are used to prepare the constant data needed in the simulation are given. These programs, in addition to scaling and normalizing all the constants, relieve the user from having to generate a large number of constants used in the simulation. Also given are brief descriptions of the components of the WEST-3 system software: Translator, Assembler, Linker, and Loader. Also included are: details of the aeroelastic rotor analysis, which is the center of a wind turbine simulation model, analysis of the gimbal subsystem; and listings of the variables, constants, and equations used in the simulation

    The effect of ICU-tailored drug-drug interaction alerts on medication prescribing and monitoring: Protocol for a cluster randomized stepped-wedge trial

    Get PDF
    Background: Drug-drug interactions (DDIs) can cause patient harm. Between 46 and 90% of patients admitted to the Intensive Care Unit (ICU) are exposed to potential DDIs (pDDIs). This rate is twice as high as patients on general wards. Clinical decision support systems (CDSSs) have shown their potential to prevent pDDIs. However, the literature shows that there is considerable room for improvement of CDSSs, in particular by increasing the clinical relevance of the pDDI alerts they generate and thereby reducing alert fatigue. However, consensus on which pDDIs are clinically relevant in the ICU setting is lacking. The primary aim of this study is to evaluate the effect of alerts based on only clinically relevant interactions for the ICU setting on the prevention of pDDIs among Dutch ICUs. Methods: To define the clinically relevant pDDIs, we will follow a rigorous two-step Delphi procedure in which a national expert panel will assess which pDDIs are perceived clinically relevant for the Dutch ICU setting. The intervention is the CDSS that generates alerts based on the clinically relevant pDDIs. The intervention will be evaluated in a stepped-wedge trial. A total of 12 Dutch adult ICUs using the same patient data management system, in which the CDSS will operate, were invited to participate in the trial. Of the 12 ICUs, 9 agreed to participate and will be enrolled in the trial. Our primary outcome measure is the incidence of clinically relevant pDDIs per 1000 medication administrations. Discussion: This study will identify pDDIs relevant for the ICU setting. It will also enhance our understanding of the effectiveness of alerts confined to clinically relevant pDDIs. Both of these contributions can facilitate the successful implementation of CDSSs in the ICU and in other domains as well. Trial registration: Nederlands Trial register Identifier: NL6762. Registered November 26, 2018

    Methodologies for CIM systems integration in small batch manufacturing

    Get PDF
    This thesis is concerned with identifying the problems and constraints faced by small batch manufacturing companies during the implementation of Computer Integrated Manufacturing (CIM). The main aim of this work is to recommend generic solutions to these problems with particular regard to those constraints arising because of the need for ClM systems integration involving both new and existing systems and procedures. The work has involved the application of modern computer technologies, including suitable hardware and software tools, in an industrial environment. Since the research has been undertaken with particular emphasis on the industrial implementor's viewpoint, it is supported by the results of a two phased implementation of computer based control systems within the machine shop of a manufacturing company. This involved the specific implementation of a Distributed Numerical Control system on a single machine in a group technology cell of machines followed by the evolution of this system into Cell and Machine Management Systems to provide a comprehensive decision support and information distribution facility for the foremen and uperators within the cell. The work also required the integration of these systems with existing Factory level manufacturing control and CADCAM functions. Alternative approaches have been investigated which may have been applicable under differing conditions and the implications that this specific work has for CIM systems integration in small batch manufacturing companies evaluated with regard not only to the users within an industrial company but also the systems suppliers external to the company. The work has resulted in certain generic contributions to knowledge by complementing ClM systems integration research with regard to problems encountered; cost implications; the use of appropriate methodologies including the role of emerging international standard methods, tools and technologies and also the importance of 'human integration' when implementing CIM systems in a real industrial situation

    A new formal and analytical process to product modeling (PPM) method and its application to the precast concrete industry

    Get PDF
    The current standard product (data) modeling process relies on the experience and subjectivity of data modelers who use their experience to eliminate redundancies and identify omissions. As a result, product modeling becomes a social activity that involves iterative review processes of committees. This study aims to develop a new, formal method for deriving product models from data collected in process models of companies within an industry sector. The theoretical goals of this study are to provide a scientific foundation to bridge the requirements collection phase and the logical modeling phase of product modeling and to formalize the derivation and normalization of a product model from the processes it supports. To achieve these goals, a new and formal method, Georgia Tech Process to Product Modeling (GTPPM), has been proposed. GTPPM consists of two modules. The first module is called the Requirements Collection and Modeling (RCM) module. It provides semantics and a mechanism to define a process model, information items used by each activity, and information flow between activities. The logic to dynamically check the consistency of information flow within a process also has been developed. The second module is called the Logical Product Modeling (LPM) module. It integrates, decomposes, and normalizes information constructs collected from a process model into a preliminary product model. Nine design patterns are defined to resolve conflicts between information constructs (ICs) and to normalize the resultant model. These two modules have been implemented as a Microsoft Visio â„¢ add-on. The tool has been registered and is also called GTPPM â„¢. The method has been tested and evaluated in the precast concrete sector of the construction industry through several GTPPM modeling efforts. By using GTPPM, a complete set of information items required for product modeling for a medium or a large industry can be collected without generalizing each company's unique process into one unified high-level model. However, the use of GTPPM is not limited to product modeling. It can be deployed in several other areas including: workflow management system or MIS (Management Information System) development software specification development business process re-engineering.Ph.D.Committee Chair: Eastman, Charles M.; Committee Co-Chair: Augenbroe, Godfried; Committee Co-Chair: Navathe, Shamkant B.; Committee Member: Hardwick, Martin; Committee Member: Sacks, Rafae
    corecore