2,017 research outputs found

    Fiber optical network design problems : case for Turkey

    Get PDF
    Ankara : The Department of Industrial Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013.Thesis (Master's) -- Bilkent University, 2013.Includes bibliographical references leaves 102-110.The problems within scope of this thesis are based on an application arising from one of the largest Internet service providers operating in Turkey. There are mainly two different problems: the green field design and copper field re-design. In the green field design problem, the aim is to design a least cost fiber optical network from scratch that will provide high bandwidth Internet access from a given central station to a set of aggregated demand nodes. Such an access can be provided either directly by installing fibers or indirectly by utilizing passive splitters. Insertion loss, bandwidth level and distance limitations should simultaneously be considered in order to provide a least cost design to enable the required service level. On the other hand, in the re-design of the copper field application, the aim is to improve the current service level by augmenting the network through fiber optical wires. Copper rings in the existing infrastructure are augmented with cabinets and direct fiber links from cabinets to demand nodes provide the required coverage to distant nodes. Mathematical models are constructed for both problem specifications. Extensive computational results based on real data from Kartal (45 points) and Bakırköy (74 points) districts in Istanbul show that the proposed models are viable exact solution methodologies for moderate dimensions.Yazar, BaşakM.S

    A dandelion-encoded evolutionary algorithm for the delay-constrained capacitated minimum spanning tree problem

    Get PDF
    This paper proposes an evolutionary algorithm with Dandelion-encoding to tackle the Delay-Constrained Capacitated Minimum Spanning Tree (DC-CMST) problem. This problem has been recently proposed, and consists of finding several broadcast trees from a source node, jointly considering traffic and delay constraints in trees. A version of the problem in which the source node is also included in the optimization process is considered as well in the paper. The Dandelion code used in the proposed evolutionary algorithm has been recently proposed as an effective way of encoding trees in evolutionary algorithms. Good properties of locality has been reported on this encoding, which makes it very effective to solve problems in which the solutions can be expressed in form of trees. In the paper we describe the main characteristics of the algorithm, the implementation of the Dandelion-encoding to tackled the DC-CMST problem and a modification needed to include the source node in the optimization. In the experimental section of this article we compare the results obtained by our evolutionary with that of a recently proposed heuristic for the DC-CMST. the Least Cost (LC) algorithm. We show that our Dandelion-encoded evolutionary algorithm is able to obtain better results that the LC in all the instances tackled. (C) 2008 Elsevier B.V. All rights reserved

    A metaheuristic and simheuristic approach for the p-Hub median problem from a telecommunication perspective

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2018.Avanços recentes no setor das telecomunicações oferecem grandes oportunidades para cidadãos e organizações em um mundo globalmente conectado, ao mesmo tempo em que surge um vasto número de desafios complexos que os engenheiros devem enfrentar. Alguns desses desafios podem ser modelados como problemas de otimização. Alguns exemplos incluem o problema de alocação de recursos em redes de comunicações, desenho de topologias de rede que satisfaça determinadas propriedades associadas a requisitos de qualidade de serviço, sobreposição de redes multicast e outros recursos importantes para comunicação de origem a destino. O primeiro objetivo desta tese é fornecer uma revisão sobre como as metaheurísticas têm sido usadas até agora para lidar com os problemas de otimização associados aos sistemas de telecomunicações, detectando as principais tendências e desafios. Particularmente, a análise enfoca os problemas de desenho, roteamento e alocação de recursos. Além disso, devido á natureza desses desafios, o presente trabalho discute como a hibridização de metaheurísticas com metodologias como simulação pode ser empregada para ampliar as capacidades das metaheurísticas na resolução de problemas de otimização estocásticos na indústria de telecomunicações. Logo, é analisado um problema de otimização com aplicações práticas para redes de telecomunica ções: o problema das p medianas não capacitado em que um número fixo de hubs tem capacidade ilimitada, cada nó não-hub é alocado para um único hub e o número de hubs é conhecido de antemão, sendo analisado em cenários determinísticos e estocásticos. Dada a sua variedade e importância prática, o problema das p medianas vem sendo aplicado e estudado em vários contextos. Seguidamente, propõem-se dois algoritmos imune-inspirados e uma metaheurística de dois estágios, que se baseia na combinação de técnicas tendenciosas e aleatórias com uma estrutura de busca local iterada, além de sua integração com a técnica de simulação de Monte Carlo para resolver o problema das p medianas. Para demonstrar a eficiência dos algoritmos, uma série de testes computacionais é realizada, utilizando instâncias de grande porte da literatura. Estes resultados contribuem para uma compreensão mais profunda da eficácia das metaheurísticas empregadas para resolver o problema das p medianas em redes pequenas e grandes. Por último, uma aplicaçã o ilustrativa do problema das p medianas é apresentada, bem como alguns insights sobre novas possibilidades para ele, estendendo a metodologia proposta para ambientes da vida real.Recent advances in the telecommunication industry o er great opportunities to citizens and organizations in a globally-connected world, but they also arise a vast number of complex challenges that decision makers must face. Some of these challenges can be modeled as optimization problems. Examples include the framework of network utility maximization for resource allocation in communication networks, nding a network topology that satis es certain properties associated with quality of service requirements, overlay multicast networks, and other important features for source to destination communication. First, this thesis provides a review on how metaheuristics have been used so far to deal with optimization problems associated with telecommunication systems, detecting the main trends and challenges. Particularly the analysis focuses on the network design, routing, and allocation problems. In addition, due to the nature of these challenges, this work discusses how the hybridization of metaheuristics with methodologies such as simulation can be employed to extend the capabilities of metaheuristics when solving stochastic optimization problems. Then, a popular optimization problem with practical applications to the design of telecommunication networks: the Uncapacitated Single Allocation p-Hub Median Problem (USApHMP) where a xed number of hubs have unlimited capacity, each non-hub node is allocated to a single hub and the number of hubs is known in advance is analyzed in deterministic and stochastic scenarios. p-hub median problems are concerned with optimality of telecommunication and transshipment networks, and seek to minimize the cost of transportation or establishing. Next, two immune inspired metaheuristics are proposed to solve the USApHMP, besides that, a two-stage metaheuristic which relies on the combination of biased-randomized techniques with an iterated local search framework and its integration with simulation Monte Carlo technique for solving the same problem is proposed. In order to show their e ciency, a series of computational tests are carried out using small and large size instances from the literature. These results contribute to a deeper understanding of the e ectiveness of the employed metaheuristics for solving the USApHMP in small and large networks. Finally, an illustrative application of the USApHMP is presented as well as some insights about some new possibilities for it, extending the proposed methodology to real-life environments.Els últims avenços en la industria de les telecomunicacions ofereixen grans oportunitats per ciutadans i organitzacions en un món globalment connectat, però a la vegada, presenten reptes als que s'enfronten tècnics i enginyers que prenen decisions. Alguns d'aquests reptes es poden modelitzar com problemes d'optimització. Exemples inclouen l'assignació de recursos a les xarxes de comunicació, trobant una topologia de xarxa que satisfà certes propietats associades a requisits de qualitat de servei, xarxes multicast superposades i altres funcions importants per a la comunicació origen a destinació. El primer objectiu d'aquest treball és proporcionar un revisió de la literatura sobre com s'han utilitzat aquestes tècniques, tradicionalment, per tractar els problemes d'optimització associats a sistemes de telecomunicació, detectant les principals tendències i desa aments. Particularment, l'estudi es centra en els problemes de disseny de xarxes, enrutament i problemes d'assignació de recursos. Degut a la naturalesa d'aquests problemes, aquest treball també analitza com es poden combinar les tècniques metaheurístiques amb metodologies de simulació per ampliar les capacitats de resoldre problemes d'optimització estocàstics. A més, es tracta un popular problema d'optimització amb aplicacions pràctiques per xarxes de telecomunicació, el problema de la p mediana no capacitat, analitzant-lo des d'escenaris deterministes i estocàstics. Aquest problema consisteix en determinar el nombre d'instal lacions (medianes) en una xarxa, minimitzant la suma de tots els costs o distàncies des d'un punt de demanda a la instal lació més propera. En general, el problema de la p mediana està lligat amb l'optimització de xarxes de telecomunicacions i de transport, i busquen minimitzar el cost de transport o establiment de la xarxa. Es proposa dos algoritmes immunològics i un algoritme metaheurístic de dues etapes basat en la combinació de tècniques aleatòries amb simulacions Monte Carlo. L'e ciència de les algoritmes es posa a prova mitjançant alguns dels test computacionals més utilitzats a la literatura, obtenint uns resultats molt satisfactoris, ja que es capaç de resoldre casos petits i grans en qüestió de segons i amb un baix cost computacional. Finalment, es presenta una aplicació il lustrativa del problema de la p mediana, així com algunes noves idees sobre aquest, que estenen la metodologia proposta a problemes de la vida real

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Module hierarchy and centralisation in the anatomy and dynamics of human cortex

    Get PDF
    Systems neuroscience has recently unveiled numerous fundamental features of the macroscopic architecture of the human brain, the connectome, and we are beginning to understand how characteristics of brain dynamics emerge from the underlying anatomical connectivity. The current work utilises complex network analysis on a high-resolution structural connectivity of the human cortex to identify generic organisation principles, such as centralised, modular and hierarchical properties, as well as specific areas that are pivotal in shaping cortical dynamics and function. After confirming its small-world and modular architecture, we characterise the cortex’ multilevel modular hierarchy, which appears to be reasonably centralised towards the brain’s strong global structural core. The potential functional importance of the core and hub regions is assessed by various complex network metrics, such as integration measures, network vulnerability and motif spectrum analysis. Dynamics facilitated by the large-scale cortical topology is explored by simulating coupled oscillators on the anatomical connectivity. The results indicate that cortical connectivity appears to favour high dynamical complexity over high synchronizability. Taking the ability to entrain other brain regions as a proxy for the threat posed by a potential epileptic focus in a given region, we also show that epileptic foci in topologically more central areas should pose a higher epileptic threat than foci in more peripheral areas. To assess the influence of macroscopic brain anatomy in shaping global resting state dynamics on slower time scales, we compare empirically obtained functional connectivity data with data from simulating dynamics on the structural connectivity. Despite considerable micro-scale variability between the two functional connectivities, our simulations are able to approximate the profile of the empirical functional connectivity. Our results outline the combined characteristics a hierarchically modular and reasonably centralised macroscopic architecture of the human cerebral cortex, which, through these topological attributes, appears to facilitate highly complex dynamics and fundamentally shape brain function

    Network evolution, success, and regional development in the European aerospace industry

    Get PDF
    The success breeds success hypothesis has been mainly applied to theoretical network approaches. We investigate the European aerospace industry using data on the European Framework Programmes and on Airbus suppliers, focusing on the success breeds success hypothesis at four levels of analysis: the spatial structure of the European aerospace R&D collaboration network, its topological architecture, the individual actors that make up the network, and through a comparison of the Airbus invention and production networks. On the spatial level, SBS is favored: successful regions maintain their position and grow on a large scale, especially so for regions that have strongly participated from the very beginning. The regional hub structure is mirrored in the architecture of the European aerospace R&D collaboration network, where well-connected hub organizations play a key role in shaping the structure of the network through their many collaborative partnerships and do so in a way that strategically positions themselves with greater ability to access and regulate knowledge flows, as assessed by several centrality measures. Only successful organizations have the ability to form so many ties, with success thus breeding success in the European aerospace R&D collaboration network. The importance of the core organizations made clear through the centrality analysis is further supported by the analysis of weak ties, where we observe that the core organizations are connected to the rest of the network with many weak ties, thereby confirming their outstanding positions in the European aerospace R&D collaboration network as being able to access knowledge or other resources. With the combination of the R&D collaboration network and the Airbus production network on a spatial level, we see additional support for SBS, as those regions whose actors are frequent participants in both networks show the greatest share of successful actors. The European aerospace industry shows an ambidextrous character as a whole, which is nonetheless insufficient to avoid recent and future challenges demanding a strong emphasis on production skills

    Architectures for a space-based information network with shared on-orbit processing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2005.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 335-343).This dissertation provides a top level assessment of technology design choices for the architecture of a space-based information network with shared on-orbit processing. Networking is an efficient method of sharing communications and lowering the cost of communications, providing better interoperability and data integration for multiple satellites. The current space communications architecture sets a critical limitation on the collection of raw data sent to the ground. By introducing powerful space-borne processing, compression of raw data can alleviate the need for expensive and expansive downlinks. Moreover, distribution of processed data directly from space sensors to the end-users may be more easily realized. A space-based information network backbone can act as the transport network for mission satellites as well as enable the concept of decoupled, shared, and perhaps distributed space-borne processing for space-based assets. Optical crosslinks are the enabling technology for creating a cost-effective network capable of supporting high data rates. In this dissertation, the space-based network backbone is designed to meet a number of mission requirements by optimizing over constellation topologies under different traffic models. With high network capacity availability, space-borne processing can be accessible by any mission satellite attached to the network. Space-borne processing capabilities can be enhanced with commercial processors that are tolerant of radiation and replenished periodically (as frequently as every two years).(cont.) Additionally, innovative ways of using a space-based information network can revolutionize satellite communications and space missions. Applications include distributed computing in space, interoperable space communications, multiplatform distributed satellite communications, coherent distributed space sensing, multisensor data fusion, and restoration of disconnected global terrestrial networks after a disaster. Lastly, the consolidation of all the different communications assets into a horizontally integrated space-based network infrastructure calls for a space-based network backbone to be designed with a generic nature. A coherent infrastructure can satisfy the goals of interoperability, flexibility, scalability, and allows the system to be evolutionary. This transformational vision of a generic space-based information network allows for growth to accommodate civilian demands, lowers the price of entry for the commercial sector, and makes way for innovation to enhance and provide additional value to military systems.by Serena Chan.Ph.D

    Algoritmos evolutivos para alguns problemas em telecomunicações

    Get PDF
    Orientadores: Flavio Keidi Miyazawa, Mauricio Guilherme de Carvalho ResendeTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nos últimos anos, as redes de telecomunicação tem experienciado um grande aumento no fluxo de dados. Desde a utilização massiva de vídeo sob demanda até o incontável número de dispositivos móveis trocando texto e vídeo, o tráfego alcançou uma escala capaz de superar a capacidade das redes atuais. Portanto, as companhias de telecomunicação ao redor do mundo tem sido forçadas a aumentar a capacidade de suas redes para servir esta crescente demanda. Como o custo de instalar uma infraestrutura de rede é geralmente muito grande, o projeto de redes usa fortemente ferramentas de otimização para manter os custos tão baixos quanto possível. Nesta tese, nós analisamos vários aspectos do projeto e implementação de redes de telecomunicação. Primeiramente, nós apresentamos um novo problema de projeto de redes usado para servir demandas sem fio de dispositivos móveis e rotear tal tráfego para a rede principal. Tais redes de acesso são baseadas em tecnologias sem fio modernos como Wi-Fi, LTE e HSPA. Este problema consideramos várias restrições reais e é difícil de ser resolvido. Nós estudamos casos reais nas vizinhanças de uma grande cidade nos Estados Unidos. Em seguida, nós apresentamos uma variação do problema de localização de hubs usado para modelar as redes principais (backbones ou laços centrais). Este problema também pode ser utilizado para modelar redes de transporte de cargas e passageiros. Nós também estudamos o problema de clusterização correlacionada com sobreposições usado para modelar o comportamento dos usuários quando utilizam seus equipamentos móveis. Neste problema, nós podemos rotular um objeto usando múltiplos rótulos e analisar a conexão entre eles. Este problema é adequado para análise de mobilidade de equipamentos que pode ser usada para estimar o tráfego em uma dada região. E finalmente, nós analisamos o licenciamento de espectro sobre uma perspectiva governamental. Nestes casos, uma agência do governo deseja vender licenças para companhias de telecomunicação para que operem em uma dada faixa de espectro. Este processo usualmente é conduzido usando leilões combinatoriais. Para todos problemas, nós propomos algoritmos genéticos de chaves aleatórias viciadas e modelos de programação linear inteira mista para resolvê-los (exceto para o problema de clusterização correlacionada com sobreposição, devido sua natureza não-linear). Os algoritmos que propusemos foram capazes de superar algoritmos do estado da arte para todos problemasAbstract: Cutting and packing problems are common problems that occur in many industry and business process. Their optimized resolution leads to great profits in several sectors. A common problem, that occur in textil and paper industries, is to cut a strip of some material to obtain several small items, using the minimum length of material. This problem, known by Two Dimensional Strip Packing Problem (2SP), is a hard combinatorial optimization problem. In this work, we present an exact algorithm to 2SP, restricted to two staged cuts (known by Two Dimensional Level Strip Packing, 2LSP). The algorithm uses the branch-and-price technique, and heuristics based on approximation algorithms to obtain upper bounds. The algorithm obtained optimal or almost optimal for small and moderate sized instancesAbstract: In last twenty years, telecommunication networks have experienced a huge increase in data utilization. From massive on-demand video to uncountable mobile devices exchanging text and video, traffic reached scales that overcame the network capacities. Therefore, telecommunication companies around the world have been forced to increase their capacity to serve this increasing demand. As the cost to deploy network infrastructure is usually very large, the design of a network heavily uses optimization tools to keep costs as low as possible. In this thesis, we analyze several aspects of the design and deployment of communication networks. First, we present a new network design problem used to serve wireless demands from mobile devices and route the traffic to the core network. Such access networks are based on modern wireless access technologies such as Wi-Fi, LTE, and HSPA. This problem has several real world constraints and it is hard to solve. We study real cases of the vicinity of a large city in the United States. Following, we present a variation of the hub-location problem used to model these core networks. Such problem is also suitable to model transportation networks. We also study the overlapping correlation clustering problem used to model the user's behavior when using their mobile devices. In such problem, one can label an object with multiple labels and analyzes the connections between them. Although this problem is very generic, it is suitable to analyze device mobility which can be used to estimate traffic in geographical regions. Finally, we analyze spectrum licensing from a governmental perspective. In these cases, a governmental agency wants to sell rights for telecommunication companies to operate over a given spectrum range. This process usually is conducted using combinatorial auctions. For all problems we propose biased random-key genetic algorithms and mixed integer linear programming models (except in the case of the overlapping correlation clustering problem due its non-linear nature). Our algorithms were able to overcome the state of the art algorithms for all problemsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã
    corecore