3,330 research outputs found

    Project for the analysis of technology transfer Quarterly report, 1 Oct. - 31 Dec. 1969

    Get PDF
    Analysis of Tech Brief-Technical Support Package progra

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Learning-Based Approaches for Graph Problems: A Survey

    Full text link
    Over the years, many graph problems specifically those in NP-complete are studied by a wide range of researchers. Some famous examples include graph colouring, travelling salesman problem and subgraph isomorphism. Most of these problems are typically addressed by exact algorithms, approximate algorithms and heuristics. There are however some drawback for each of these methods. Recent studies have employed learning-based frameworks such as machine learning techniques in solving these problems, given that they are useful in discovering new patterns in structured data that can be represented using graphs. This research direction has successfully attracted a considerable amount of attention. In this survey, we provide a systematic review mainly on classic graph problems in which learning-based approaches have been proposed in addressing the problems. We discuss the overview of each framework, and provide analyses based on the design and performance of the framework. Some potential research questions are also suggested. Ultimately, this survey gives a clearer insight and can be used as a stepping stone to the research community in studying problems in this field.Comment: v1: 41 pages; v2: 40 page

    H-TSP: Hierarchically Solving the Large-Scale Travelling Salesman Problem

    Full text link
    We propose an end-to-end learning framework based on hierarchical reinforcement learning, called H-TSP, for addressing the large-scale Travelling Salesman Problem (TSP). The proposed H-TSP constructs a solution of a TSP instance starting from the scratch relying on two components: the upper-level policy chooses a small subset of nodes (up to 200 in our experiment) from all nodes that are to be traversed, while the lower-level policy takes the chosen nodes as input and outputs a tour connecting them to the existing partial route (initially only containing the depot). After jointly training the upper-level and lower-level policies, our approach can directly generate solutions for the given TSP instances without relying on any time-consuming search procedures. To demonstrate effectiveness of the proposed approach, we have conducted extensive experiments on randomly generated TSP instances with different numbers of nodes. We show that H-TSP can achieve comparable results (gap 3.42% vs. 7.32%) as SOTA search-based approaches, and more importantly, we reduce the time consumption up to two orders of magnitude (3.32s vs. 395.85s). To the best of our knowledge, H-TSP is the first end-to-end deep reinforcement learning approach that can scale to TSP instances of up to 10000 nodes. Although there are still gaps to SOTA results with respect to solution quality, we believe that H-TSP will be useful for practical applications, particularly those that are time-sensitive e.g., on-call routing and ride hailing service.Comment: Accepted by AAAI 2023, February 202

    A Perturbed Self-organizing Multiobjective Evolutionary Algorithm to solve Multiobjective TSP

    Get PDF
    Travelling Salesman Problem (TSP) is a very important NP-Hard problem getting focused more on these days. Having improvement on TSP, right now consider the multi-objective TSP (MOTSP), broadened occurrence of travelling salesman problem. Since TSP is NP-hard issue MOTSP is additionally a NP-hard issue. There are a lot of algorithms and methods to solve the MOTSP among which Multiobjective evolutionary algorithm based on decomposition is appropriate to solve it nowadays. This work presents a new algorithm which combines the Data Perturbation, Self-Organizing Map (SOM) and MOEA/D to solve the problem of MOTSP, named Perturbed Self-Organizing multiobjective Evolutionary Algorithm (P-SMEA). In P-SMEA Self-Organizing Map (SOM) is used extract neighborhood relationship information and with MOEA/D subproblems are generated and solved simultaneously to obtain the optimal solution. Data Perturbation is applied to avoid the local optima. So by using the P-SMEA, MOTSP can be handled efficiently. The experimental results show that P-SMEA outperforms MOEA/D and SMEA on a set of test instances
    • …
    corecore