303 research outputs found

    Analysis and Design of Communication Avoiding Algorithms for Out of Memory(OOM) SVD

    Get PDF
    Many applications — including big data analytics, information retrieval, gene expression analysis, and numerical weather prediction – require the solution of large, dense singular value decomposition (SVD). The size of matrices used in many of these applications is becoming too large to fit into into a computer’s main memory at one time, and the traditional SVD algorithms that require all the matrix components to be loaded into memory before computation starts cannot be used directly. Moving data (communication) between levels of memory hierarchy and the disk exposes extra challenges to design SVD for such big matrices because of the exponential growth in the gap between floating-point arithmetic rate and bandwidth for many different storage devices on modern high performance computers. In this dissertation, we have analyzed communication overhead on hierarchical memory systems and disks for SVD algorithms and designed communication-avoiding (CA) Out of Memory (OOM) SVD algorithms. By Out of Memory we mean that the matrix is too big to fit in the main memory and therefore must reside in external or internal storage. We have studied communication overhead for classical one-stage blocked SVD and two-stage tiled SVD algorithms and proposed our OOM SVD algorithm, which reduces the communication cost. We have presented theoretical analysis and strategies to design CA OOM SVD algorithms, developed optimized implementation of CA OOM SVD for multicore architecture, and presented its performance results. When matrices are tall, performance of OOM SVD can be improved significantly by carrying out QR decomposition on the original matrix in the first place. The upper triangular matrix generated by QR decomposition may fit in the main memory, and in-core SVD can be used efficiently. Even if the upper triangular matrix does not fit in the main memory, OOM SVD will work on a smaller matrix. That is why we have analyzed communication reduction for OOM QR algorithm, implemented optimized OOM tiled QR for multicore systems and showed performance improvement of OOM SVD algorithms for tall matrices

    Parallel methods for linear systems solution in extreme learning machines: an overview

    Get PDF
    This paper aims to present an updated review of parallel algorithms for solving square and rectangular single and double precision matrix linear systems using multi-core central processing units and graphic processing units. A brief description of the methods for the solution of linear systems based on operations, factorization and iterations was made. The methodology implemented, in this article, is a documentary and it was based on the review of about 17 papers reported in the literature during the last five years (2016-2020). The disclosed findings demonstrate the potential of parallelism to significantly decrease extreme learning machines training times for problems with large amounts of data given the calculation of the Moore Penrose pseudo inverse. The implementation of parallel algorithms in the calculation of the pseudo-inverse will allow to contribute significantly in the applications of diversifying areas, since it can accelerate the training time of the extreme learning machines with optimal results

    On Algorithmic Variants of Parallel Gaussian Elimination: Comparison of Implementations in Terms of Performance and Numerical Properties

    Get PDF
    Gaussian elimination is a canonical linear algebra procedure for solving linear systems of equations. In the last few years, the algorithm received a lot of attention in an attempt to improve its parallel performance. This article surveys recent developments in parallel implementations of the Gaussian elimination. Five different flavors are investigated. Three of them are based on different strategies for pivoting: partial pivoting, incremental pivoting, and tournament pivoting. The fourth one replaces pivoting with the Random Butterfly Transformation, and finally, an implementation without pivoting is used as a performance baseline. The technique of iterative refinement is applied to recover numerical accuracy when necessary. All parallel implementations are produced using dynamic, superscalar, runtime scheduling and tile matrix layout. Results on two multi-socket multicore systems are presented. Performance and numerical accuracy is analyzed

    Minimizing Communication for Eigenproblems and the Singular Value Decomposition

    Full text link
    Algorithms have two costs: arithmetic and communication. The latter represents the cost of moving data, either between levels of a memory hierarchy, or between processors over a network. Communication often dominates arithmetic and represents a rapidly increasing proportion of the total cost, so we seek algorithms that minimize communication. In \cite{BDHS10} lower bounds were presented on the amount of communication required for essentially all O(n3)O(n^3)-like algorithms for linear algebra, including eigenvalue problems and the SVD. Conventional algorithms, including those currently implemented in (Sca)LAPACK, perform asymptotically more communication than these lower bounds require. In this paper we present parallel and sequential eigenvalue algorithms (for pencils, nonsymmetric matrices, and symmetric matrices) and SVD algorithms that do attain these lower bounds, and analyze their convergence and communication costs.Comment: 43 pages, 11 figure

    09061 Abstracts Collection -- Combinatorial Scientific Computing

    Get PDF
    From 01.02.2009 to 06.02.2009, the Dagstuhl Seminar 09061 ``Combinatorial Scientific Computing \u27\u27 was held in Schloss Dagstuhl -- Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Mixed-Precision Numerical Linear Algebra Algorithms: Integer Arithmetic Based LU Factorization and Iterative Refinement for Hermitian Eigenvalue Problem

    Get PDF
    Mixed-precision algorithms are a class of algorithms that uses low precision in part of the algorithm in order to save time and energy with less accurate computation and communication. These algorithms usually utilize iterative refinement processes to improve the approximate solution obtained from low precision to the accuracy we desire from doing all the computation in high precision. Due to the demand of deep learning applications, there are hardware developments offering different low-precision formats including half precision (FP16), Bfloat16 and integer operations for quantized integers, which uses integers with a shared scalar to represent a set of equally spaced numbers. As new hardware architectures focus on bringing performance in these formats, the mixed-precision algorithms have more potential leverage on them and outmatch traditional fixed-precision algorithms. This dissertation consists of two articles. In the first article, we adapt one of the most fundamental algorithms in numerical linear algebra---LU factorization with partial pivoting--- to use integer arithmetic. With the goal of obtaining a low accuracy factorization as the preconditioner of generalized minimal residual (GMRES) to solve systems of linear equations, the LU factorization is adapted to use two different fixed-point formats for matrices L and U. A left-looking variant is also proposed for matrices with unbounded column growth. Finally, GMRES iterative refinement has shown that it can work on matrices with condition numbers up to 10000 with the algorithm that uses int16 as input and int32 accumulator for the update step. The second article targets symmetric and Hermitian eigenvalue problems. In this section we revisit the SICE algorithm from Dongarra et al. By applying the Sherman-Morrison formula on the diagonally-shifted tridiagonal systems, we propose an updated SICE-SM algorithm. By incorporating the latest two-stage algorithms from the PLASMA and MAGMA software libraries for numerical linear algebra, we achieved up to 3.6x speedup using the mixed-precision eigensolver with the blocked SICE-SM algorithm for iterative refinement when compared with full double complex precision solvers for the cases with a portion of eigenvalues and eigenvectors requested

    Parallel computing 2011, ParCo 2011: book of abstracts

    Get PDF
    This book contains the abstracts of the presentations at the conference Parallel Computing 2011, 30 August - 2 September 2011, Ghent, Belgiu

    Dense and sparse parallel linear algebra algorithms on graphics processing units

    Full text link
    Una línea de desarrollo seguida en el campo de la supercomputación es el uso de procesadores de propósito específico para acelerar determinados tipos de cálculo. En esta tesis estudiamos el uso de tarjetas gráficas como aceleradores de la computación y lo aplicamos al ámbito del álgebra lineal. En particular trabajamos con la biblioteca SLEPc para resolver problemas de cálculo de autovalores en matrices de gran dimensión, y para aplicar funciones de matrices en los cálculos de aplicaciones científicas. SLEPc es una biblioteca paralela que se basa en el estándar MPI y está desarrollada con la premisa de ser escalable, esto es, de permitir resolver problemas más grandes al aumentar las unidades de procesado. El problema lineal de autovalores, Ax = lambda x en su forma estándar, lo abordamos con el uso de técnicas iterativas, en concreto con métodos de Krylov, con los que calculamos una pequeña porción del espectro de autovalores. Este tipo de algoritmos se basa en generar un subespacio de tamaño reducido (m) en el que proyectar el problema de gran dimensión (n), siendo m << n. Una vez se ha proyectado el problema, se resuelve este mediante métodos directos, que nos proporcionan aproximaciones a los autovalores del problema inicial que queríamos resolver. Las operaciones que se utilizan en la expansión del subespacio varían en función de si los autovalores deseados están en el exterior o en el interior del espectro. En caso de buscar autovalores en el exterior del espectro, la expansión se hace mediante multiplicaciones matriz-vector. Esta operación la realizamos en la GPU, bien mediante el uso de bibliotecas o mediante la creación de funciones que aprovechan la estructura de la matriz. En caso de autovalores en el interior del espectro, la expansión requiere resolver sistemas de ecuaciones lineales. En esta tesis implementamos varios algoritmos para la resolución de sistemas de ecuaciones lineales para el caso específico de matrices con estructura tridiagonal a bloques, que se ejecutan en GPU. En el cálculo de las funciones de matrices hemos de diferenciar entre la aplicación directa de una función sobre una matriz, f(A), y la aplicación de la acción de una función de matriz sobre un vector, f(A)b. El primer caso implica un cálculo denso que limita el tamaño del problema. El segundo permite trabajar con matrices dispersas grandes, y para resolverlo también hacemos uso de métodos de Krylov. La expansión del subespacio se hace mediante multiplicaciones matriz-vector, y hacemos uso de GPUs de la misma forma que al resolver autovalores. En este caso el problema proyectado comienza siendo de tamaño m, pero se incrementa en m en cada reinicio del método. La resolución del problema proyectado se hace aplicando una función de matriz de forma directa. Nosotros hemos implementado varios algoritmos para calcular las funciones de matrices raíz cuadrada y exponencial, en las que el uso de GPUs permite acelerar el cálculo.One line of development followed in the field of supercomputing is the use of specific purpose processors to speed up certain types of computations. In this thesis we study the use of graphics processing units as computer accelerators and apply it to the field of linear algebra. In particular, we work with the SLEPc library to solve large scale eigenvalue problems, and to apply matrix functions in scientific applications. SLEPc is a parallel library based on the MPI standard and is developed with the premise of being scalable, i.e. to allow solving larger problems by increasing the processing units. We address the linear eigenvalue problem, Ax = lambda x in its standard form, using iterative techniques, in particular with Krylov's methods, with which we calculate a small portion of the eigenvalue spectrum. This type of algorithms is based on generating a subspace of reduced size (m) in which to project the large dimension problem (n), being m << n. Once the problem has been projected, it is solved by direct methods, which provide us with approximations of the eigenvalues of the initial problem we wanted to solve. The operations used in the expansion of the subspace vary depending on whether the desired eigenvalues are from the exterior or from the interior of the spectrum. In the case of searching for exterior eigenvalues, the expansion is done by matrix-vector multiplications. We do this on the GPU, either by using libraries or by creating functions that take advantage of the structure of the matrix. In the case of eigenvalues from the interior of the spectrum, the expansion requires solving linear systems of equations. In this thesis we implemented several algorithms to solve linear systems of equations for the specific case of matrices with a block-tridiagonal structure, that are run on GPU. In the computation of matrix functions we have to distinguish between the direct application of a matrix function, f(A), and the action of a matrix function on a vector, f(A)b. The first case involves a dense computation that limits the size of the problem. The second allows us to work with large sparse matrices, and to solve it we also make use of Krylov's methods. The expansion of subspace is done by matrix-vector multiplication, and we use GPUs in the same way as when solving eigenvalues. In this case the projected problem starts being of size m, but it is increased by m on each restart of the method. The solution of the projected problem is done by directly applying a matrix function. We have implemented several algorithms to compute the square root and the exponential matrix functions, in which the use of GPUs allows us to speed up the computation.Una línia de desenvolupament seguida en el camp de la supercomputació és l'ús de processadors de propòsit específic per a accelerar determinats tipus de càlcul. En aquesta tesi estudiem l'ús de targetes gràfiques com a acceleradors de la computació i ho apliquem a l'àmbit de l'àlgebra lineal. En particular treballem amb la biblioteca SLEPc per a resoldre problemes de càlcul d'autovalors en matrius de gran dimensió, i per a aplicar funcions de matrius en els càlculs d'aplicacions científiques. SLEPc és una biblioteca paral·lela que es basa en l'estàndard MPI i està desenvolupada amb la premissa de ser escalable, açò és, de permetre resoldre problemes més grans en augmentar les unitats de processament. El problema lineal d'autovalors, Ax = lambda x en la seua forma estàndard, ho abordem amb l'ús de tècniques iteratives, en concret amb mètodes de Krylov, amb els quals calculem una xicoteta porció de l'espectre d'autovalors. Aquest tipus d'algorismes es basa a generar un subespai de grandària reduïda (m) en el qual projectar el problema de gran dimensió (n), sent m << n. Una vegada s'ha projectat el problema, es resol aquest mitjançant mètodes directes, que ens proporcionen aproximacions als autovalors del problema inicial que volíem resoldre. Les operacions que s'utilitzen en l'expansió del subespai varien en funció de si els autovalors desitjats estan en l'exterior o a l'interior de l'espectre. En cas de cercar autovalors en l'exterior de l'espectre, l'expansió es fa mitjançant multiplicacions matriu-vector. Aquesta operació la realitzem en la GPU, bé mitjançant l'ús de biblioteques o mitjançant la creació de funcions que aprofiten l'estructura de la matriu. En cas d'autovalors a l'interior de l'espectre, l'expansió requereix resoldre sistemes d'equacions lineals. En aquesta tesi implementem diversos algorismes per a la resolució de sistemes d'equacions lineals per al cas específic de matrius amb estructura tridiagonal a blocs, que s'executen en GPU. En el càlcul de les funcions de matrius hem de diferenciar entre l'aplicació directa d'una funció sobre una matriu, f(A), i l'aplicació de l'acció d'una funció de matriu sobre un vector, f(A)b. El primer cas implica un càlcul dens que limita la grandària del problema. El segon permet treballar amb matrius disperses grans, i per a resoldre-ho també fem ús de mètodes de Krylov. L'expansió del subespai es fa mitjançant multiplicacions matriu-vector, i fem ús de GPUs de la mateixa forma que en resoldre autovalors. En aquest cas el problema projectat comença sent de grandària m, però s'incrementa en m en cada reinici del mètode. La resolució del problema projectat es fa aplicant una funció de matriu de forma directa. Nosaltres hem implementat diversos algorismes per a calcular les funcions de matrius arrel quadrada i exponencial, en les quals l'ús de GPUs permet accelerar el càlcul.Lamas Daviña, A. (2018). Dense and sparse parallel linear algebra algorithms on graphics processing units [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112425TESI

    Algorithm Architecture Co-design for Dense and Sparse Matrix Computations

    Get PDF
    abstract: With the end of Dennard scaling and Moore's law, architects have moved towards heterogeneous designs consisting of specialized cores to achieve higher performance and energy efficiency for a target application domain. Applications of linear algebra are ubiquitous in the field of scientific computing, machine learning, statistics, etc. with matrix computations being fundamental to these linear algebra based solutions. Design of multiple dense (or sparse) matrix computation routines on the same platform is quite challenging. Added to the complexity is the fact that dense and sparse matrix computations have large differences in their storage and access patterns and are difficult to optimize on the same architecture. This thesis addresses this challenge and introduces a reconfigurable accelerator that supports both dense and sparse matrix computations efficiently. The reconfigurable architecture has been optimized to execute the following linear algebra routines: GEMV (Dense General Matrix Vector Multiplication), GEMM (Dense General Matrix Matrix Multiplication), TRSM (Triangular Matrix Solver), LU Decomposition, Matrix Inverse, SpMV (Sparse Matrix Vector Multiplication), SpMM (Sparse Matrix Matrix Multiplication). It is a multicore architecture where each core consists of a 2D array of processing elements (PE). The 2D array of PEs is of size 4x4 and is scheduled to perform 4x4 sized matrix updates efficiently. A sequence of such updates is used to solve a larger problem inside a core. A novel partitioned block compressed sparse data structure (PBCSC/PBCSR) is used to perform sparse kernel updates. Scalable partitioning and mapping schemes are presented that map input matrices of any given size to the multicore architecture. Design trade-offs related to the PE array dimension, size of local memory inside a core and the bandwidth between on-chip memories and the cores have been presented. An optimal core configuration is developed from this analysis. Synthesis results using a 7nm PDK show that the proposed accelerator can achieve a performance of upto 32 GOPS using a single core.Dissertation/ThesisMasters Thesis Computer Engineering 201
    • …
    corecore