21 research outputs found

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation

    Get PDF
    The application of laser technologies in surgical interventions has been accepted in the clinical domain due to their atraumatic properties. In addition to manual application of fibre-guided lasers with tissue contact, non-contact transoral laser microsurgery (TLM) of laryngeal tumours has been prevailed in ENT surgery. However, TLM requires many years of surgical training for tumour resection in order to preserve the function of adjacent organs and thus preserve the patient’s quality of life. The positioning of the microscopic laser applicator outside the patient can also impede a direct line-of-sight to the target area due to anatomical variability and limit the working space. Further clinical challenges include positioning the laser focus on the tissue surface, imaging, planning and performing laser ablation, and motion of the target area during surgery. This dissertation aims to address the limitations of TLM through robotic approaches and intraoperative assistance. Although a trend towards minimally invasive surgery is apparent, no highly integrated platform for endoscopic delivery of focused laser radiation is available to date. Likewise, there are no known devices that incorporate scene information from endoscopic imaging into ablation planning and execution. For focusing of the laser beam close to the target tissue, this work first presents miniaturised focusing optics that can be integrated into endoscopic systems. Experimental trials characterise the optical properties and the ablation performance. A robotic platform is realised for manipulation of the focusing optics. This is based on a variable-length continuum manipulator. The latter enables movements of the endoscopic end effector in five degrees of freedom with a mechatronic actuation unit. The kinematic modelling and control of the robot are integrated into a modular framework that is evaluated experimentally. The manipulation of focused laser radiation also requires precise adjustment of the focal position on the tissue. For this purpose, visual, haptic and visual-haptic assistance functions are presented. These support the operator during teleoperation to set an optimal working distance. Advantages of visual-haptic assistance are demonstrated in a user study. The system performance and usability of the overall robotic system are assessed in an additional user study. Analogous to a clinical scenario, the subjects follow predefined target patterns with a laser spot. The mean positioning accuracy of the spot is 0.5 mm. Finally, methods of image-guided robot control are introduced to automate laser ablation. Experiments confirm a positive effect of proposed automation concepts on non-contact laser surgery.Die Anwendung von Lasertechnologien in chirurgischen Interventionen hat sich aufgrund der atraumatischen Eigenschaften in der Klinik etabliert. Neben manueller Applikation von fasergeführten Lasern mit Gewebekontakt hat sich die kontaktfreie transorale Lasermikrochirurgie (TLM) von Tumoren des Larynx in der HNO-Chirurgie durchgesetzt. Die TLM erfordert zur Tumorresektion jedoch ein langjähriges chirurgisches Training, um die Funktion der angrenzenden Organe zu sichern und damit die Lebensqualität der Patienten zu erhalten. Die Positionierung des mikroskopis chen Laserapplikators außerhalb des Patienten kann zudem die direkte Sicht auf das Zielgebiet durch anatomische Variabilität erschweren und den Arbeitsraum einschränken. Weitere klinische Herausforderungen betreffen die Positionierung des Laserfokus auf der Gewebeoberfläche, die Bildgebung, die Planung und Ausführung der Laserablation sowie intraoperative Bewegungen des Zielgebietes. Die vorliegende Dissertation zielt darauf ab, die Limitierungen der TLM durch robotische Ansätze und intraoperative Assistenz zu adressieren. Obwohl ein Trend zur minimal invasiven Chirurgie besteht, sind bislang keine hochintegrierten Plattformen für die endoskopische Applikation fokussierter Laserstrahlung verfügbar. Ebenfalls sind keine Systeme bekannt, die Szeneninformationen aus der endoskopischen Bildgebung in die Ablationsplanung und -ausführung einbeziehen. Für eine situsnahe Fokussierung des Laserstrahls wird in dieser Arbeit zunächst eine miniaturisierte Fokussieroptik zur Integration in endoskopische Systeme vorgestellt. Experimentelle Versuche charakterisieren die optischen Eigenschaften und das Ablationsverhalten. Zur Manipulation der Fokussieroptik wird eine robotische Plattform realisiert. Diese basiert auf einem längenveränderlichen Kontinuumsmanipulator. Letzterer ermöglicht in Kombination mit einer mechatronischen Aktuierungseinheit Bewegungen des Endoskopkopfes in fünf Freiheitsgraden. Die kinematische Modellierung und Regelung des Systems werden in ein modulares Framework eingebunden und evaluiert. Die Manipulation fokussierter Laserstrahlung erfordert zudem eine präzise Anpassung der Fokuslage auf das Gewebe. Dafür werden visuelle, haptische und visuell haptische Assistenzfunktionen eingeführt. Diese unterstützen den Anwender bei Teleoperation zur Einstellung eines optimalen Arbeitsabstandes. In einer Anwenderstudie werden Vorteile der visuell-haptischen Assistenz nachgewiesen. Die Systemperformanz und Gebrauchstauglichkeit des robotischen Gesamtsystems werden in einer weiteren Anwenderstudie untersucht. Analog zu einem klinischen Einsatz verfolgen die Probanden mit einem Laserspot vorgegebene Sollpfade. Die mittlere Positioniergenauigkeit des Spots beträgt dabei 0,5 mm. Zur Automatisierung der Ablation werden abschließend Methoden der bildgestützten Regelung vorgestellt. Experimente bestätigen einen positiven Effekt der Automationskonzepte für die kontaktfreie Laserchirurgie

    A Textbook of Advanced Oral and Maxillofacial Surgery

    Get PDF
    The scope of OMF surgery has expanded; encompassing treatment of diseases, disorders, defects and injuries of the head, face, jaws and oral cavity. This internationally-recognized specialty is evolving with advancements in technology and instrumentation. Specialists of this discipline treat patients with impacted teeth, facial pain, misaligned jaws, facial trauma, oral cancer, cysts and tumors; they also perform facial cosmetic surgery and place dental implants. The contents of this volume essentially complements the volume 1; with chapters that cover both basic and advanced concepts on complex topics in oral and maxillofacial surgery

    Concept and Design of a Hand-held Mobile Robot System for Craniotomy

    Get PDF
    This work demonstrates a highly intuitive robot for Surgical Craniotomy Procedures. Utilising a wheeled hand-held robot, to navigate the Craniotomy Drill over a patient\u27s skull, the system does not remove the surgeons from the procedure, but supports them during this critical phase of the operation

    Concept and Design of a Hand-held Mobile Robot System for Craniotomy

    Get PDF
    This work demonstrates a highly intuitive robot for Surgical Craniotomy Procedures. Utilising a wheeled hand-held robot, to navigate the Craniotomy Drill over a patient\u27s skull, the system does not remove the surgeons from the procedure, but supports them during this critical phase of the operation

    Augmented Reality Assistance for Surgical Interventions using Optical See-Through Head-Mounted Displays

    Get PDF
    Augmented Reality (AR) offers an interactive user experience via enhancing the real world environment with computer-generated visual cues and other perceptual information. It has been applied to different applications, e.g. manufacturing, entertainment and healthcare, through different AR media. An Optical See-Through Head-Mounted Display (OST-HMD) is a specialized hardware for AR, where the computer-generated graphics can be overlaid directly onto the user's normal vision via optical combiners. Using OST-HMD for surgical intervention has many potential perceptual advantages. As a novel concept, many technical and clinical challenges exist for OST-HMD-based AR to be clinically useful, which motivates the work presented in this thesis. From the technical aspects, we first investigate the display calibration of OST-HMD, which is an indispensable procedure to create accurate AR overlay. We propose various methods to reduce the user-related error, improve robustness of the calibration, and remodel the calibration as a 3D-3D registration problem. Secondly, we devise methods and develop hardware prototype to increase the user's visual acuity of both real and virtual content through OST-HMD, to aid them in tasks that require high visual acuity, e.g. dental procedures. Thirdly, we investigate the occlusion caused by the OST-HMD hardware, which limits the user's peripheral vision. We propose to use alternative indicators to remind the user of unattended environment motion. From the clinical perspective, we identified many clinical use cases where OST-HMD-based AR is potentially helpful, developed applications integrated with current clinical systems, and conducted proof-of-concept evaluations. We first present a "virtual monitor'' for image-guided surgery. It can replace real radiology monitors in the operating room with easier user control and more flexibility in positioning. We evaluated the "virtual monitor'' for simulated percutaneous spine procedures. Secondly, we developed ARssist, an application for the bedside assistant in robotic surgery. The assistant can see the robotic instruments and endoscope within the patient body with ARssist. We evaluated the efficiency, safety and ergonomics of the assistant during two typical tasks: instrument insertion and manipulation. The performance for inexperienced users is significantly improved with ARssist, and for experienced users, the system significantly enhanced their confidence level. Lastly, we developed ARAMIS, which utilizes real-time 3D reconstruction and visualization to aid the laparoscopic surgeon. It demonstrates the concept of "X-ray see-through'' surgery. Our preliminary evaluation validated the application via a peg transfer task, and also showed significant improvement in hand-eye coordination. Overall, we have demonstrated that OST-HMD based AR application provides ergonomic improvements, e.g. hand-eye coordination. In challenging situations or for novice users, the improvements in ergonomic factors lead to improvement in task performance. With continuous effort as a community, optical see-through augmented reality technology will be a useful interventional aid in the near future

    METHODOLOGY FOR RESEARCH AND DEVELOPMENT OF NOVEL MEDICAL DEVICES FOR MINIMALLY INVASIVE INTERVENTIONS

    Get PDF
    The design of innovative medical device requires extensive and hard efforts to reach good results in terms of safety, efficacy and cost effectiveness. First of all the idea has to be set and a wide search of state of the art, both technological and academic, has to be developed. Then the materials, manufacturing processes and design constraints have to be understood. In this work three examples of innovative surgical devices for minimally invasive surgery and assistance have been presented. The Muneretto Beam catheter is a new device for atrial defibrillation. Starting from a catheter produced by Estech company for the treatment of atrial fibrillation by ablating cardiac tissue during surgery, a system for the magnetic guidance of the same has been implemented. Thanks to finite element analysis of various configurations of magnets and to several in vitro tests, a final configuration which allows a good balance between the sliding of the catheter on the tissues and the magnetic interaction and adhesion to tissues has been found. Further attention has been taken to the development of the cover and the right configuration and method of use of the device. The VideoDrain system is a new catheter for the monitoring of post-operative wound. After critical surgical procedures it is necessary to monitor the status of the surgical wound for avoiding second look surgical interventions. Therefore a new balloon catheter for allowing the vision of the abdominal cavity has been produced. Several in vitro and in vivo trials have been conducted and the device is at the pre-industrial stage. The FloSeal GI cath. is a new device for the gastrointestinal release of an haemostatic substance of the Baxter company: the Floseal thrombin matrix. It consists in a balloon catheter suited for the use in the lower and upper gastrointestinal tract in the occurrence of bleedings during endoscopic procedures. This device has been CE labelled and is now on the market. All the devices described in this work come from ideas of surgeons leader in innovation in the field of minimally invasive interventions. Their collaboration has been fundamental for the several phases of design and tests of the devices. This Ph.D. thesis is divided into five chapters. In the Introduction chapter the process of research and development of innovative MDs for minimally invasive surgery has been illustrated. The second chapter shows the efforts done to find a working configuration for the Muneretto Beam catheter and the subsequent first prototypes developed. The progress in the design of VideoDrain has been explained in the third chapter; the whole process goes from the idea to the animal test on prototypes and a preliminary risk analysis. The development of the Floseal GI Catheter is depicted in the fourth chapter; all the details of the materials used and tests done to ensure a CE mark have been reported. Finally, in the Conclusion chapter I have reported some lessons learned from the work in the field of MDs, as a student, researcher and engineer at close contact with the world of surgery and minimally invasive technologies. Some papers about a preliminary research activity in the field of minimally invasive surgery and robotic interventions have been also enclosed. These works have been very useful to start the understanding of the complex and amazing world of MIS

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer

    Get PDF
    With continuous advancements and adoption of minimally invasive surgery, proficiency with nontrivial surgical skills involved is becoming a greater concern. Consequently, the use of surgical simulation has been increasingly embraced by many for training and skill transfer purposes. Some systems utilize haptic feedback within a high-fidelity anatomically-correct virtual environment whereas others use manikins, synthetic components, or box trainers to mimic primary components of a corresponding procedure. Surgical simulation development for some minimally invasive procedures is still, however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest wall deformity. This work aims to address this gap by exploring the challenges of developing both a purely virtual and a purely physical simulation platform of the Nuss procedure and their implications in a training context. This work then describes the development of a hybrid mixed-reality system that integrates virtual and physical constituents as well as an augmentation of the haptic interface, to carry out a reproduction of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for its training platform. Furthermore, this work carries out a user study to investigate the system’s face, content, and construct validity to establish its faithfulness as a training platform
    corecore