62 research outputs found

    Survey analysis for optimization algorithms applied to electroencephalogram

    Get PDF
    This paper presents a survey for optimization approaches that analyze and classify Electroencephalogram (EEG) signals. The automatic analysis of EEG presents a significant challenge due to the high-dimensional data volume. Optimization algorithms seek to achieve better accuracy by selecting practical features and reducing unwanted features. Forty-seven reputable research papers are provided in this work, emphasizing the developed and executed techniques divided into seven groups based on the applied optimization algorithm particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), grey wolf optimizer (GWO), Bat, Firefly, and other optimizer approaches). The main measures to analyze this paper are accuracy, precision, recall, and F1-score assessment. Several datasets have been utilized in the included papers like EEG Bonn University, CHB-MIT, electrocardiography (ECG) dataset, and other datasets. The results have proven that the PSO and GWO algorithms have achieved the highest accuracy rate of around 99% compared with other techniques

    A New Approach to Power System Protection using Time-frequency Analysis and Pattern Recognition

    Get PDF
    The fault diagnosis of Electric Power System is a process of discriminating the faulted system elements by protective relays and subsequent tripping by circuit breakers. Specially, as soon as some serious faults occur on a power system, a lot of alarm information is transmitted to the control center. Under such situation, the operators are required to judge the cause, location, and the system elements with faults rapidly and accurately. Thus, good fault diagnosis methods can provide accurate and effective diagnostic information to dispatch operators and help them take necessary measures in fault situation so as to guarantee the secure and stable operation of the Electric power system. This thesis reports various techniques used for detection, classification and localization of faults on the high voltage transmission line. The distance protection scheme for transmission line is employed for various power networks such as single-circuit line, double-circuit line, and lines having FACTS ..

    Data generation and model usage for machine learning-based dynamic security assessment and control

    Get PDF
    The global effort to decarbonise, decentralise and digitise electricity grids in response to climate change and evolving electricity markets with active consumers (prosumers) is gaining traction in countries around the world. This effort introduces new challenges to electricity grid operation. For instance, the introduction of variable renewable energy generation like wind and solar energy to replace conventional power generation like oil, gas, and coal increases the uncertainty in power systems operation. Additionally, the dynamics introduced by these renewable energy sources that are interfaced through converters are much faster than those in conventional system with thermal power plants. This thesis investigates new operating tools for the system operator that are data-driven to help manage the increased operational uncertainty in this transition. The presented work aims to an- swer some open questions regarding the implementation of these machine learning approaches in real-time operation, primarily related to the quality of training data to train accurate machine- learned models for predicting dynamic behaviour, and the use of these machine-learned models in the control room for real-time operation. To answer the first question, this thesis presents a novel sampling approach for generating ’rare’ operating conditions that are physically feasible but have not been experienced by power systems before. In so doing, the aim is to move away from historical observations that are often limited in describing the full range of operating conditions. Then, the thesis presents a novel approach based on Wasserstein distance and entropy to efficiently combine both historical and ’rare’ operating conditions to create an enriched database capable of training a high- performance classifier. To answer the second question, this thesis presents a scalable and rigorous workflow to trade-off multiple objective criteria when choosing decision tree models for real-time operation by system operators. Then, showcases a practical implementation for using a machine-learned model to optimise power system operation cost using topological control actions. Future research directions are underscored by the crucial role of machine learning in securing low inertia systems, and this thesis identifies research gaps covering physics-informed learning, machine learning-based network planning for secure operation, and robust training datasets are outlined.Open Acces

    Advances in power quality analysis techniques for electrical machines and drives: a review

    Get PDF
    The electric machines are the elements most used at an industry level, and they represent the major power consumption of the productive processes. Particularly speaking, among all electric machines, the motors and their drives play a key role since they literally allow the motion interchange in the industrial processes; it could be said that they are the medullar column for moving the rest of the mechanical parts. Hence, their proper operation must be guaranteed in order to raise, as much as possible, their efficiency, and, as consequence, bring out the economic benefits. This review presents a general overview of the reported works that address the efficiency topic in motors and drives and in the power quality of the electric grid. This study speaks about the relationship existing between the motors and drives that induces electric disturbances into the grid, affecting its power quality, and also how these power disturbances present in the electrical network adversely affect, in turn, the motors and drives. In addition, the reported techniques that tackle the detection, classification, and mitigations of power quality disturbances are discussed. Additionally, several works are reviewed in order to present the panorama that show the evolution and advances in the techniques and tendencies in both senses: motors and drives affecting the power source quality and the power quality disturbances affecting the efficiency of motors and drives. A discussion of trends in techniques and future work about power quality analysis from the motors and drives efficiency viewpoint is provided. Finally, some prompts are made about alternative methods that could help in overcome the gaps until now detected in the reported approaches referring to the detection, classification and mitigation of power disturbances with views toward the improvement of the efficiency of motors and drives.Peer ReviewedPostprint (published version

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Power Quality Management and Classification for Smart Grid Application using Machine Learning

    Get PDF
    The Efficient Wavelet-based Convolutional Transformer network (EWT-ConvT) is proposed to detect power quality disturbances in time-frequency domain using attention mechanism. The support of machine learning further improves the network accuracy with synthetic signal generation and less system complexity under practical environment. The proposed EWT-ConvT can achieve 94.42% accuracy which is superior than other deep learning models. The detection of disturbances using EWT-ConvT can also be implemented into smart grid applications for real-time embedded system development

    Study of Computational and Experimental Methodologies for Cracks Recognition of Vibrating Systems using Modal Parameters

    Get PDF
    Mostly the structural members and machine elements are subjected to progressive static and dynamic loading and that may cause initiation of defects in the form of crack. The cause of damage may be due to the normal operation, accidents or severe natural calamities such as earthquake or storm. That may lead to catastrophic failure or collapse of the structures. Thereby the importance of identification of damage in the structures is not only for leading safe operation but also to prevent the loss of economy and lives. The condition monitoring of the engineering systems is attracted by the researchers and scientists very much to invent the automated fault diagnosis mechanism using the change in vibration response before and after damage. The structural steel is widely used in various engineering systems such as bridges, railway coaches, ships, automobiles, etc. The glass fiber reinforced epoxy layered composite material has become popular for constructing the various engineering structures due to its valuable characteristics such as higher stiffness and strength to weight ratio, better damage tolerance capacity and wear resistance. Therefore, layered composite and structural steel have been taken into account in the current study. The theoretical analysis has been performed to measure the vibration signatures (Natural Frequencies and Mode Shapes) of multiple cracked composite and structural steel. The presence of the crack in structures generates an additional flexibility. That is evaluated by strain energy release rate given by linear fracture mechanics. The additional flexibility alters the dynamic signatures of cracked beam. The local stiffness matrix has been calculated by the inverse of local dimensionless compliance matrix. The finite element analysis has been carried out to measure the vibration signatures of cracked cantilever beam using commercially available finite element software package ANSYS. It is observed from the current analysis, the various factors such as the orientation of cracks, number and position of the cracks affect the performance and effectiveness of damage detection techniques. The various automated artificial intelligent (AI) techniques such as fuzzy controller, neural network and hybrid AI techniques based multiple faults diagnosis systems are developed using vibration response of cracked cantilever beams. The experiments have been conducted to verify the performance and accuracy of proposed methods. A good agreement is observed between the results
    corecore