36,126 research outputs found

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    A Complexity Measure Based on Cognitive Weights

    Get PDF
    Cognitive Informatics plays an important role in understanding the fundamental characteristics of software. This paper proposes a model of the fundamental characteristics of software, complexity in terms of cognitive weights of basic control structures. Cognitive weights are degree of difficulty or relative time and effort required for comprehending a given piece of software, which satisfy the definition of complexity. An attempt has also been made to prove the robustness of proposed complexity measure by comparing it with the other measures based on cognitive informatics

    PRESENCE: A human-inspired architecture for speech-based human-machine interaction

    No full text
    Recent years have seen steady improvements in the quality and performance of speech-based human-machine interaction driven by a significant convergence in the methods and techniques employed. However, the quantity of training data required to improve state-of-the-art systems seems to be growing exponentially and performance appears to be asymptotic to a level that may be inadequate for many real-world applications. This suggests that there may be a fundamental flaw in the underlying architecture of contemporary systems, as well as a failure to capitalize on the combinatorial properties of human spoken language. This paper addresses these issues and presents a novel architecture for speech-based human-machine interaction inspired by recent findings in the neurobiology of living systems. Called PRESENCE-"PREdictive SENsorimotor Control and Emulation" - this new architecture blurs the distinction between the core components of a traditional spoken language dialogue system and instead focuses on a recursive hierarchical feedback control structure. Cooperative and communicative behavior emerges as a by-product of an architecture that is founded on a model of interaction in which the system has in mind the needs and intentions of a user and a user has in mind the needs and intentions of the system

    Didactic Networks: A proposal for e-learning content generation

    Get PDF
    The Didactic Networks proposed in this paper are based on previous publications in the field of the RSR (Rhetorical-Semantic Relations). The RSR is a set of primitive relations used for building a specific kind of semantic networks for artificial intelligence applications on the web: the RSN (Rhetorical-Semantic Networks). We bring into focus the RSR application in the field of elearning, by defining Didactic Networks as a new set of semantic patterns oriented to the development of eleaming applications. The different lines we offer in our research Jail mainly into three levels: • The most basic one is in the field of computational linguistics and related to Logical Operations on RSR (RSR Inverses and plurals. RSR combinations, etc), once they have been created. The application of Walter Bosma 's results regarding rhetorical distance application and treatment as semantic weighted networks is one of the important issues here. • In parallel, we have been working on the creation of a knowledge representation and storage model and data architecture capable of supporting the definition of knowledge networks based on RSR. • The third strategic line is in the meso-level, the formulation of a molecular structure of knowledge based on the most frequently used patterns. The main contribution at this level is the set of Fundamental Cognitive Networks (FCN) as an application of Novak's mental maps proposal. This paper is part of this third intermediate level, and the Fundamental Didactic Networks (FDN) are the result of the application of rhetorical theoiy procedures to the instructional theory. We have formulated a general set of RSR capable of building discourse, making it possible to express any concept, procedure or principle in terms of knowledge nodes and RSRs. The instructional knowledge can then be elaborated in the same way. This network structure expressing the instructional knowledge in terms of RSR makes the objective of developing web-learning lessons semi-automutkally possible, as well as any other type of utilities oriented towards the exploitation of semantic structure, such as the automatic question answering systems
    • …
    corecore