2,983 research outputs found

    A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures

    Get PDF
    A numerical technique is proposed for the electromagnetic characterization of the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane. The technique combines the finite element and boundary integral methods to formulate a system of equations for the solution of the aperture fields and those inside the cavity. Specifically, the finite element method is employed to formulate the fields in the cavity region and the boundary integral approach is used in conjunction with the equivalence principle to represent the fields above the ground plane. Unlike traditional approaches, the proposed technique does not require knowledge of the cavity's Green's function and is, therefore, applicable to arbitrary shape depressions and material fillings. Furthermore, the proposed formulation leads to a system having a partly full and partly sparse as well as symmetric and banded matrix which can be solved efficiently using special algorithms

    Development of 3D electromagnetic modeling tools for airborne vehicles

    Get PDF
    The main goal of this project is to develop methodologies for scattering by airborne composite vehicles. Although our primary focus continues to be the development of a general purpose code for analyzing the entire structure as a single unit, a number of other tasks are also pursued in parallel with this effort. These tasks are important in testing the overall approach and in developing suitable models for materials coatings, junctions and, more generally, in assessing the effectiveness of the various parts comprising the final code. Here, we briefly discuss our progress on the five different tasks which were pursued during this period. Our progress on each of these tasks is described in the detailed reports (listed at the end of this report) and the memoranda included. The first task described below is, of course, the core of this project and deals with the development of the overall code. Undoubtedly, it is the outcome of the research which was funded by NASA-Ames and the Navy over the past three years. During this year we developed the first finite element code for scattering by structures of arbitrary shape and composition. The code employs a new absorbing boundary condition which allows termination of the finite element mesh only 0.3 lambda from the outer surface of the target. This leads to a remarkable reduction of the mesh size and is a unique feature of the code. Other unique features of this code include capabilities to model resistive sheets, impedance sheets and anisotropic materials. This last capability is the latest feature of the code and is still under development. The code has been extensively validated for a number of composite geometries and some examples are given. The validation of the code is still in progress for anisotropic and larger non-metallic geometries and cavities. The developed finite element code is based on a Galerkin's formulation and employs edge-based tetrahedral elements for discretizing the dielectric sections and the region between the target and the outer mesh termination boundary (ATB). This boundary is placed in conformity with the target's outer surface, thus resulting in additional reduction of the unknown count

    Advanced Integral Equation and Hybrid Methods for the Efficient Analysis of General Waveguide and Antenna Structures

    Get PDF
    Three new numerical methods for the calculation of passive waveguide and antenna structures are presented in this work. They are designed to be used within a comprehensive hybrid CAD tool for the efficient analysis of those building blocks for which the fast mode-matching/2-D finite element technique cannot be applied. The advanced algorithms introduced here are doubly higher order, that is higher order basis functions are considered for current/field modeling whereas geometry discretization is performed with triangular/tetrahedral elements of higher polynomial degree

    A Comparison of FDTD Algorithms for Subcellular Modeling of Slots in Shielding Enclosures

    Get PDF
    Thin slot modeling for the finite-difference time-domain (PDTD) method is investigated. Two subcellular algorithms for modeling thin slots with the FDTD method are compared for application to shielding enclosures in EMC. The stability of the algorithms is investigated, and comparisons between the two methods for slots in planes, and slots in loaded cavities are also made

    Hybrid Computational Algorithms for the Problem of Scattering from Grating Structures

    Get PDF
    Modeling of wave scattering from grating couplers has become increasingly important due to extensive recent research interest in the problem of plasmonic resonance. Computational algorithms which are specially used to model the problem of scattering from the grating surfaces suffer from several drawbacks such as accuracy, computational efficiency, and generality. To address the challenges of the previous methods, this work presents a novel hybrid Finite Element-Boundary Integral Method (FE-BIM) solution to the problem of scattering from grating surfaces consisting of finite or infinite array of two-dimensional cavities and holes in an infinite metallic walls covered with a stratified dielectric layer. To solve the scattering problem from finite number of cavities or holes engraved in a perfectly conducting screen (PEC), the solution region is divided into interior regions containing the cavities or holes and the region exterior to them. The finite element formulation is applied inside the interior region to derive a linear system of equations associated with nodal field values. Using two-boundary formulation, the surface integral equation employing free-space Green's function is then applied at \emph{only} the opening of the cavities or holes to truncate the computational domain and to connect the matrix subsystem generated from each cavity or hole. The hybrid FE-BIM method is extended to solve the scattering problem from an infinite array of cavities or holes in a PEC screen by deriving the quasi-periodic Green's function. In the scattering problem from an infinite array of cavities, the finite element formulation is first used inside a single cavity in the unit-cell. Next, the surface integral equation employing the quasi-periodic Green's function is applied at the opening of \emph{only} a single cavity as a boundary constraint to truncate the computational domain. Effect of the infinite array of cavities is incorporated into the system of the nodal equations by the quasi-periodic Green's function. Finally, the method based on the hybrid FE-BIM is developed to solve the scattering problem from grating surfaces covered with a stratified dielectric layer. In this method, the surface integral equation employing grounded dielectric slab Green's function is applied at the opening of the cavities or holes inside the dielectric coating to truncate the solution region efficiently. An accurate algorithm is presented to derive the grounded dielectric slab Green's function in spatial domain incorporating the effects of the surface-waves and leaky-waves excited and propagated inside the dielectric slab. Numerical examples of near and far field calculations for finite or infinite array of cavities or holes are presented to validate accuracy, versatility, and efficiency of the algorithm presented in this thesis

    Generalized Lorenz-Mie theory : application to scattering and resonances of photonic complexes

    Get PDF
    Les structures photoniques complexes permettent de façonner la propagation lumineuse à l’échelle de la longueur d’onde au moyen de processus de diffusion et d’interférence. Cette fonctionnalité à l’échelle nanoscopique ouvre la voie à de multiples applications, allant des communications optiques aux biosenseurs. Cette thèse porte principalement sur la modélisation numérique de structures photoniques complexes constituées d’arrangements bidimensionnels de cylindres diélectriques. Deux applications sont privilégiées, soit la conception de dispositifs basés sur des cristaux photoniques pour la manipulation de faisceaux, de même que la réalisation de sources lasers compactes basées sur des molécules photoniques. Ces structures optiques peuvent être analysées au moyen de la théorie de Lorenz-Mie généralisée, une méthode numérique permettant d’exploiter la symétrie cylindrique des diffuseurs sous-jacents. Cette dissertation débute par une description de la théorie de Lorenz-Mie généralisée, obtenue des équations de Maxwell de l’électromagnétisme. D’autres outils théoriques utiles sont également présentés, soit une nouvelle formulation des équations de Maxwell-Bloch pour la modélisation de milieux actifs appelée SALT (steady state ab initio laser theory). Une description sommaire des algorithmes d’optimisation dits métaheuristiques conclut le matériel introductif de la thèse. Nous présentons ensuite la conception et l’optimisation de dispositifs intégrés permettant la génération de faisceaux d’amplitude, de phase et de degré de polarisation contrôlés. Le problème d’optimisation combinatoire associé est solutionné numériquement au moyen de deux métaheuristiques, l’algorithme génétique et la recherche tabou. Une étude théorique des propriétés de micro-lasers basés sur des molécules photoniques – constituées d’un arrangement simple de cylindres actifs – est finalement présentée. En combinant la théorie de Lorenz-Mie et SALT, nous démontrons que les propriétés physiques de ces lasers, plus spécifiquement leur seuil, leur spectre et leur profil d’émission, peuvent être affectés de façon nontriviale par les paramètres du milieu actif sous-jacent. Cette conclusion est hors d’atteinte de l’approche établie qui consiste à calculer les étatsméta-stables de l’équation de Helmholtz et leur facteur de qualité. Une perspective sur la modélisation de milieux photoniques désordonnés conclut cette dissertation.Complex photonic media mold the flow of light at the wavelength scale using multiple scattering and interference effects. This functionality at the nano-scale level paves the way for various applications, ranging from optical communications to biosensing. This thesis is mainly concerned with the numerical modeling of photonic complexes based on twodimensional arrays of cylindrical scatterers. Two applications are considered, namely the use of photonic-crystal-like devices for the design of integrated beam shaping elements, as well as active photonic molecules for the realization of compact laser sources. These photonic structures can be readily analyzed using the 2D Generalized Lorenz-Mie theory (2D-GLMT), a numerical scheme which exploits the symmetry of the underlying cylindrical structures. We begin this thesis by presenting the electromagnetic theory behind 2D-GLMT.Other useful frameworks are also presented, including a recently formulated stationary version of theMaxwell-Bloch equations called steady-state ab initio laser theory (SALT).Metaheuristics, optimization algorithms based on empirical rules for exploring large solution spaces, are also discussed. After laying down the theoretical content, we proceed to the design and optimization of beam shaping devices based on engineered photonic-crystal-like structures. The combinatorial optimization problem associated to beam shaping is tackled using the genetic algorithm (GA) as well as tabu search (TS). Our results show the possibility to design integrated beam shapers tailored for the control of the amplitude, phase and polarization profile of the output beam. A theoretical and numerical study of the lasing characteristics of photonic molecules – composed of a few coupled optically active cylinders – is also presented. Using a combination of 2D-GLMT and SALT, it is shown that the physical properties of photonic molecule lasers, specifically their threshold, spectrum and emission profile, can be significantly affected by the underlying gain medium parameters. These findings are out of reach of the established approach of computing the meta-stable states of the Helmholtz equation and their quality factor. This dissertation is concluded with a research outlook concerning themodeling of disordered photonicmedia

    Hypercube matrix computation task

    Get PDF
    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18)
    • …
    corecore