222 research outputs found

    A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc

    Full text link
    In the context of large-scale eigenvalue problems, methods of Davidson type such as Jacobi-Davidson can be competitive with respect to other types of algorithms, especially in some particularly difficult situations such as computing interior eigenvalues or when matrix factorization is prohibitive or highly inefficient. However, these types of methods are not generally available in the form of high-quality parallel implementations, especially for the case of non-Hermitian eigenproblems. We present our implementation of various Davidson-type methods in SLEPc, the Scalable Library for Eigenvalue Problem Computations. The solvers incorporate many algorithmic variants for subspace expansion and extraction, and cover a wide range of eigenproblems including standard and generalized, Hermitian and non-Hermitian, with either real or complex arithmetic. We provide performance results on a large battery of test problems.This work was supported by the Spanish Ministerio de Ciencia e Innovacion under project TIN2009-07519. Author's addresses: E. Romero, Institut I3M, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain), and J. E. Roman, Departament de Sistemes Informatics i Computacio, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; email: [email protected] Alcalde, E.; Román MoltĂł, JE. (2014). A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc. ACM Transactions on Mathematical Software. 40(2):13:01-13:29. https://doi.org/10.1145/2543696S13:0113:29402P. Arbenz, M. Becka, R. Geus, U. Hetmaniuk, and T. Mengotti. 2006. On a parallel multilevel preconditioned Maxwell eigensolver. Parallel Comput. 32, 2, 157--165.Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Eds. 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA.C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist. 2009. Anasazi software for the numerical solution of large-scale eigenvalue problems. ACM Trans. Math. Softw. 36, 3, 13:1--13:23.S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. Smith, and H. Zhang. 2011. PETSc users manual. Tech. Rep. ANL-95/11-Revision 3.2, Argonne National Laboratory.S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. 1997. Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds., Birkhaüser, 163--202.M. A. Brebner and J. Grad. 1982. Eigenvalues of Ax =λ Bx for real symmetric matrices A and B computed by reduction to a pseudosymmetric form and the HR process. Linear Algebra Appl. 43, 99--118.C. Campos, J. E. Roman, E. Romero, and A. Tomas. 2011. SLEPc users manual. Tech. Rep. DSICII/24/02 - Revision 3.2, D. Sistemes Informàtics i Computació, Universitat Politècnica de València. http://www.grycap.upv.es/slepc.T. Dannert and F. Jenko. 2005. Gyrokinetic simulation of collisionless trapped-electronmode turbulence. Phys. Plasmas 12, 7, 072309.E. R. Davidson. 1975. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 1, 87--94.T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1, 1:1--1:25.H. C. Elman, A. Ramage, and D. J. Silvester. 2007. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33, 2. Article 14.T. Ericsson and A. Ruhe. 1980. The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems. Math. Comp. 35, 152, 1251--1268.M. Ferronato, C. Janna, and G. Pini. 2012. Efficient parallel solution to large-size sparse eigenproblems with block FSAI preconditioning. Numer. Linear Algebra Appl. 19, 5, 797--815.D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst. 1998. Jacobi--Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20, 1, 94--125.M. A. Freitag and A. Spence. 2007. Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem. Electron. Trans. Numer. Anal. 28, 40--64.M. Genseberger. 2010. Improving the parallel performance of a domain decomposition preconditioning technique in the Jacobi-Davidson method for large scale eigenvalue problems. App. Numer. Math. 60, 11, 1083--1099.V. Hernandez, J. E. Roman, and A. Tomas. 2007. Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Comput. 33, 7--8, 521--540.V. Hernandez, J. E. Roman, and V. Vidal. 2005. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31, 3, 351--362.V. Heuveline, B. Philippe, and M. Sadkane. 1997. Parallel computation of spectral portrait of large matrices by Davidson type methods. Numer. Algor. 16, 1, 55--75.M. E. Hochstenbach. 2005a. Generalizations of harmonic and refined Rayleigh-Ritz. Electron. Trans. Numer. Anal. 20, 235--252.M. E. Hochstenbach. 2005b. Variations on harmonic Rayleigh--Ritz for standard and generalized eigenproblems. Preprint, Department of Mathematics, Case Western Reserve University.M. E. Hochstenbach and Y. Notay. 2006. The Jacobi--Davidson method. GAMM Mitt. 29, 2, 368--382.F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. 2010. A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J. Comput. Phys. 229, 8, 2932--2947.A. V. Knyazev. 2001. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23, 2, 517--541.A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov. 2007. Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in HYPRE and PETSc. SIAM J. Sci. Comput. 29, 5, 2224--2239.J. Kopal, M. Rozložník, M. Tuma, and A. Smoktunowicz. 2012. Rounding error analysis of orthogonalization with a non-standard inner product. Numer. Math. 52, 4, 1035--1058.D. Kressner. 2006. Block algorithms for reordering standard and generalized Schur forms. ACM Trans. Math. Softw. 32, 4, 521--532.R. B. Lehoucq, D. C. Sorensen, and C. Yang. 1998. ARPACK Users' Guide, Solution of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA.Z. Li, Y. Saad, and M. Sosonkina. 2003. pARMS: a parallel version of the algebraic recursive multilevel solver. Numer. Linear Algebra Appl. 10, 5--6, 485--509.J. R. McCombs and A. Stathopoulos. 2006. Iterative validation of eigensolvers: a scheme for improving the reliability of Hermitian eigenvalue solvers. SIAM J. Sci. Comput. 28, 6, 2337--2358.F. Merz, C. Kowitz, E. Romero, J. E. Roman, and F. Jenko. 2012. Multi-dimensional gyrokinetic parameter studies based on eigenvalues computations. Comput. Phys. Commun. 183, 4, 922--930.R. B. Morgan. 1990. Davidson's method and preconditioning for generalized eigenvalue problems. J. Comput. Phys. 89, 241--245.R. B. Morgan. 1991. Computing interior eigenvalues of large matrices. Linear Algebra Appl. 154--156, 289--309.R. B. Morgan and D. S. Scott. 1986. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices. SIAM J. Sci. Statist. Comput. 7, 3, 817--825.R. Natarajan and D. Vanderbilt. 1989. A new iterative scheme for obtaining eigenvectors of large, real-symmetric matrices. J. Comput. Phys. 82, 1, 218--228.M. Nool and A. van der Ploeg. 2000. A parallel Jacobi--Davidson-type method for solving large generalized eigenvalue problems in magnetohydrodynamics. SIAM J. Sci. Comput. 22, 1, 95--112.J. Olsen, P. Jørgensen, and J. Simons. 1990. Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem. Phys. Lett. 169, 6, 463--472.C. C. Paige, B. N. Parlett, and H. A. van der Vorst. 1995. Approximate solutions and eigenvalue bounds from Krylov subspaces. Numer. Linear Algebra Appl. 2, 2, 115--133.E. Romero and J. E. Roman. 2011. Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi--Davidson eigensolver. Concur. Comput.: Pract. Exp. 23, 17, 2179--2191.Y. Saad. 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 2, 461--469.G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst. 1996. Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36, 3, 595--633.G. L. G. Sleijpen and H. A. van der Vorst. 1996. A Jacobi--Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 2, 401--425.G. L. G. Sleijpen and H. A. van der Vorst. 2000. A Jacobi--Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42, 2, 267--293.G. L. G. Sleijpen, H. A. van der Vorst, and E. Meijerink. 1998. Efficient expansion of subspaces in the Jacobi--Davidson method for standard and generalized eigenproblems. Electron. Trans. Numer. Anal. 7, 75--89.A. Stathopoulos. 2007. Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part I: Seeking one eigenvalue. SIAM J. Sci. Comput. 29, 2, 481--514.A. Stathopoulos and J. R. McCombs. 2007. Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part II: Seeking many eigenvalues. SIAM J. Sci. Comput. 29, 5, 2162--2188.A. Stathopoulos and J. R. McCombs. 2010. PRIMME: PReconditioned Iterative MultiMethod Eigensolver: Methods and software description. ACM Trans. Math. Softw. 37, 2, 21:1--21:30.A. Stathopoulos and Y. Saad. 1998. Restarting techniques for the (Jacobi-)Davidson symmetric eigenvalue methods. Electron. Trans. Numer. Anal. 7, 163--181.A. Stathopoulos, Y. Saad, and C. F. Fischer. 1995. Robust preconditioning of large, sparse, symmetric eigenvalue problems. J. Comput. Appl. Math. 64, 3, 197--215.A. Stathopoulos, Y. Saad, and K. Wu. 1998. Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput. 19, 1, 227--245.G. W. Stewart. 2001. Matrix Algorithms. Volume II: Eigensystems. SIAM, Philadelphia, PA.H. A. van der Vorst. 2002. Computational methods for large eigenvalue problems. In Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions, Eds., Vol. VIII, Elsevier, 3--179.H. A. van der Vorst. 2004. Modern methods for the iterative computation of eigenpairs of matrices of high dimension. Z. Angew. Math. Mech. 84, 7, 444--451.T. van Noorden and J. Rommes 2007. Computing a partial generalized real Schur form using the Jacobi--Davidson method. Numer. Linear Algebra Appl. 14, 3, 197--215.T. D. Young, E. Romero, and J. E. Roman. 2013. Parallel finite element density functional computations exploiting grid refinement and subspace recycling. Comput. Phys. Commun. 184, 1, 66--72

    An Optimized and Scalable Eigensolver for Sequences of Eigenvalue Problems

    Get PDF
    In many scientific applications the solution of non-linear differential equations are obtained through the set-up and solution of a number of successive eigenproblems. These eigenproblems can be regarded as a sequence whenever the solution of one problem fosters the initialization of the next. In addition, in some eigenproblem sequences there is a connection between the solutions of adjacent eigenproblems. Whenever it is possible to unravel the existence of such a connection, the eigenproblem sequence is said to be correlated. When facing with a sequence of correlated eigenproblems the current strategy amounts to solving each eigenproblem in isolation. We propose a alternative approach which exploits such correlation through the use of an eigensolver based on subspace iteration and accelerated with Chebyshev polynomials (ChFSI). The resulting eigensolver is optimized by minimizing the number of matrix-vector multiplications and parallelized using the Elemental library framework. Numerical results show that ChFSI achieves excellent scalability and is competitive with current dense linear algebra parallel eigensolvers.Comment: 23 Pages, 6 figures. First revision of an invited submission to special issue of Concurrency and Computation: Practice and Experienc

    Block Iterative Eigensolvers for Sequences of Correlated Eigenvalue Problems

    Get PDF
    In Density Functional Theory simulations based on the LAPW method, each self-consistent field cycle comprises dozens of large dense generalized eigenproblems. In contrast to real-space methods, eigenpairs solving for problems at distinct cycles have either been believed to be independent or at most very loosely connected. In a recent study [7], it was demonstrated that, contrary to belief, successive eigenproblems in a sequence are strongly correlated with one another. In particular, by monitoring the subspace angles between eigenvectors of successive eigenproblems, it was shown that these angles decrease noticeably after the first few iterations and become close to collinear. This last result suggests that we can manipulate the eigenvectors, solving for a specific eigenproblem in a sequence, as an approximate solution for the following eigenproblem. In this work we present results that are in line with this intuition. We provide numerical examples where opportunely selected block iterative eigensolvers benefit from the reuse of eigenvectors by achieving a substantial speed-up. The results presented will eventually open the way to a widespread use of block iterative eigensolvers in ab initio electronic structure codes based on the LAPW approach.Comment: 12 Pages, 5 figures. Accepted for publication on Computer Physics Communication

    A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation

    Full text link
    [EN] Large-scale polynomial eigenvalue problems can be solved by Krylov methods operating on an equivalent linear eigenproblem (linearization) of size d center dot n where d is the polynomial degree and n is the problem size, or by projection methods that keep the computation in the n-dimensional space. Jacobi-Davidson belongs to the latter class of methods, and, since it is a preconditioned eigensolver, it may be competitive in cases where explicitly computing a matrix factorization is exceedingly expensive. However, a fully fledged implementation of polynomial Jacobi-Davidson has to consider several issues, including deflation to compute more than one eigenpair, use of non-monomial bases for the case of large degree polynomials, and handling of complex eigenvalues when computing in real arithmetic. We discuss these aspects and present computational results of a parallel implementation in the SLEPc library.This work was supported by Agencia Estatal de Investigación (AEI) under Grant TIN2016-75985-P, which includes European Commission ERDF funds.Campos, C.; Jose E. Roman (2020). A polynomial Jacobi-Davidson solver with support for non-monomial bases and deflation. BIT Numerical Mathematics. 60(2):295-318. https://doi.org/10.1007/s10543-019-00778-zS295318602Bai, Z., Su, Y.: SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005)Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., May, D., McInnes, L.C., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical report ANL-95/11—revision 3.10, Argonne National Laboratory (2018)Betcke, T., Kressner, D.: Perturbation, extraction and refinement of invariant pairs for matrix polynomials. Linear Algebra Appl. 435(3), 514–536 (2011)Betcke, T., Voss, H.: A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems. Future Gen. Comput. Syst. 20(3), 363–372 (2004)Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39(2), 7:1–7:28 (2013)Campos, C., Roman, J.E.: Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc. SIAM J. Sci. Comput. 38(5), S385–S411 (2016)Effenberger, C.: Robust successive computation of eigenpairs for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 34(3), 1231–1256 (2013)Effenberger, C., Kressner, D.: Chebyshev interpolation for nonlinear eigenvalue problems. BIT 52(4), 933–951 (2012)Fokkema, D.R., Sleijpen, G.L.G., van der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998)Guo, J.S., Lin, W.W., Wang, C.S.: Numerical solutions for large sparse quadratic eigenvalue problems. Linear Algebra Appl. 225, 57–89 (1995)Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–208 (2010)Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 1005–1028 (2006)Hochbruck, M., Lochel, D.: A multilevel Jacobi–Davidson method for polynomial PDE eigenvalue problems arising in plasma physics. SIAM J. Sci. Comput. 32(6), 3151–3169 (2010)Hochstenbach, M.E., Sleijpen, G.L.G.: Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem. Numer. Linear Algebra Appl. 15(1), 35–54 (2008)Huang, T.M., Hwang, F.N., Lai, S.H., Wang, W., Wei, Z.H.: A parallel polynomial Jacobi–Davidson approach for dissipative acoustic eigenvalue problems. Comput. Fluids 45(1), 207–214 (2011)Hwang, F.N., Wei, Z.H., Huang, T.M., Wang, W.: A parallel additive Schwarz preconditioned Jacobi–Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J.Comput. Phys. 229(8), 2932–2947 (2010)Kressner, D.: A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114, 355–372 (2009)Kressner, D., Roman, J.E.: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Linear Algebra Appl. 21(4), 569–588 (2014)Lancaster, P.: Linearization of regular matrix polynomials. Electron. J. Linear Algebra 17, 21–27 (2008)Matsuo, Y., Guo, H., Arbenz, P.: Experiments on a parallel nonlinear Jacobi–Davidson algorithm. Procedia Comput. Sci. 29, 565–575 (2014)Meerbergen, K.: Locking and restarting quadratic eigenvalue solvers. SIAM J. Sci. Comput. 22(5), 1814–1839 (2001)Roman, J.E., Campos, C., Romero, E., Tomas, A.: SLEPc users manual. Technical report DSIC-II/24/02—Revision 3.10, D. Sistemes Informàtics i Computació, Universitat Politècnica de València (2018)Romero, E., Roman, J.E.: A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc. ACM Trans. Math. Softw. 40(2), 13:1–13:29 (2014)Rommes, J., Martins, N.: Computing transfer function dominant poles of large-scale second-order dynamical systems. SIAM J. Sci. Comput. 30(4), 2137–2157 (2008)Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Publications, Philadelphia (2003)Sensiau, C., Nicoud, F., van Gijzen, M., van Leeuwen, J.W.: A comparison of solvers for quadratic eigenvalue problems from combustion. Int. J. Numer. Methods Fluids 56(8), 1481–1488 (2008)Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17(2), 401–425 (1996)Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., van der Vorst, H.A.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996)Sleijpen, G.L.G., van der Vorst, H.A., Meijerink, E.: Efficient expansion of subspaces in the Jacobi–Davidson method for standard and generalized eigenproblems. Electron. Trans. Numer. Anal. 7, 75–89 (1998)Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001)van Gijzen, M.B., Raeven, F.: The parallel computation of the smallest eigenpair of an acoustic problem with damping. Int. J. Numer. Methods Eng. 45(6), 765–777 (1999)van Noorden, T., Rommes, J.: Computing a partial generalized real Schur form using the Jacobi–Davidson method. Numer. Linear Algebra Appl. 14(3), 197–215 (2007)Voss, H.: A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems. Comput. Struct. 85(17–18), 1284–1292 (2007

    The parallel computation of the smallest eigenpair of an acoustic problem with damping

    Get PDF
    Acoustic problems with damping may give rise to large quadratic eigenproblems. Efficient and parallelizable algorithms are required for solving these problems. The recently proposed Jacobi-Davidson method is well suited for parallel computing: no matrix decomposition and no back or forward substitutions are needed. This paper describes the parallel solution of the smallest eigenpair of a realistic and very large quadratic eigenproblem with the Jacobi-Davidson method

    Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver

    Full text link
    In the numerical solution of large-scale eigenvalue problems, Davidson-type methods are an increasingly popular alternative to Krylov eigensolvers. The main motivation is to avoid the expensive factorizations that are often needed by Krylov solvers when the problem is generalized or interior eigenvalues are desired. In Davidson-type methods, the factorization is replaced by iterative linear solvers that can be accelerated by a smart preconditioner. Jacobi-Davidson is one of the most effective variants. However, parallel implementations of this method are not widely available, particularly for non-symmetric problems. We present a parallel implementation that has been included in SLEPc, the Scalable Library for Eigenvalue Problem Computations, and test it in the context of a highly scalable plasma turbulence simulation code. We analyze its parallel efficiency and compare it with a Krylov-Schur eigensolver. © 2011 John Wiley and Sons, Ltd..The authors are indebted to Florian Merz for providing us with the test cases and for his useful suggestions. The authors acknowledge the computer resources provided by the Barcelona Supercomputing Center (BSC). This work was supported by the Spanish Ministerio de Ciencia e Innovacion under project TIN2009-07519.Romero Alcalde, E.; Román Moltó, JE. (2011). Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver. Concurrency and Computation: Practice and Experience. 23:2179-2191. https://doi.org/10.1002/cpe.1740S2179219123Hochstenbach, M. E., & Notay, Y. (2009). Controlling Inner Iterations in the Jacobi–Davidson Method. SIAM Journal on Matrix Analysis and Applications, 31(2), 460-477. doi:10.1137/080732110Heuveline, V., Philippe, B., & Sadkane, M. (1997). Numerical Algorithms, 16(1), 55-75. doi:10.1023/a:1019126827697Arbenz, P., Bečka, M., Geus, R., Hetmaniuk, U., & Mengotti, T. (2006). On a parallel multilevel preconditioned Maxwell eigensolver. Parallel Computing, 32(2), 157-165. doi:10.1016/j.parco.2005.06.005Genseberger, M. (2010). Improving the parallel performance of a domain decomposition preconditioning technique in the Jacobi–Davidson method for large scale eigenvalue problems. Applied Numerical Mathematics, 60(11), 1083-1099. doi:10.1016/j.apnum.2009.07.004Stathopoulos, A., & McCombs, J. R. (2010). PRIMME. ACM Transactions on Mathematical Software, 37(2), 1-30. doi:10.1145/1731022.1731031Baker, C. G., Hetmaniuk, U. L., Lehoucq, R. B., & Thornquist, H. K. (2009). Anasazi software for the numerical solution of large-scale eigenvalue problems. ACM Transactions on Mathematical Software, 36(3), 1-23. doi:10.1145/1527286.1527287Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019Romero, E., Cruz, M. B., Roman, J. E., & Vasconcelos, P. B. (2011). A Parallel Implementation of the Jacobi-Davidson Eigensolver for Unsymmetric Matrices. High Performance Computing for Computational Science – VECPAR 2010, 380-393. doi:10.1007/978-3-642-19328-6_35Romero, E., & Roman, J. E. (2010). A Parallel Implementation of the Jacobi-Davidson Eigensolver and Its Application in a Plasma Turbulence Code. Lecture Notes in Computer Science, 101-112. doi:10.1007/978-3-642-15291-7_11Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). (1846). Journal für die reine und angewandte Mathematik (Crelles Journal), 1846(30), 51-94. doi:10.1515/crll.1846.30.51G. Sleijpen, G. L., & Van der Vorst, H. A. (1996). A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 17(2), 401-425. doi:10.1137/s0895479894270427Fokkema, D. R., Sleijpen, G. L. G., & Van der Vorst, H. A. (1998). Jacobi--Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils. SIAM Journal on Scientific Computing, 20(1), 94-125. doi:10.1137/s1064827596300073Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154-156, 289-309. doi:10.1016/0024-3795(91)90381-6Paige, C. C., Parlett, B. N., & van der Vorst, H. A. (1995). Approximate solutions and eigenvalue bounds from Krylov subspaces. Numerical Linear Algebra with Applications, 2(2), 115-133. doi:10.1002/nla.1680020205Stathopoulos, A., Saad, Y., & Wu, K. (1998). Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods. SIAM Journal on Scientific Computing, 19(1), 227-245. doi:10.1137/s1064827596304162Sleijpen, G. L. G., Booten, A. G. L., Fokkema, D. R., & van der Vorst, H. A. (1996). Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numerical Mathematics, 36(3), 595-633. doi:10.1007/bf01731936Balay S Buschelman K Eijkhout V Gropp W Kaushik D Knepley M McInnes LC Smith B Zhang H PETSc users manual 2010Hernandez, V., Roman, J. E., & Tomas, A. (2007). Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Computing, 33(7-8), 521-540. doi:10.1016/j.parco.2007.04.004Dannert, T., & Jenko, F. (2005). Gyrokinetic simulation of collisionless trapped-electron mode turbulence. Physics of Plasmas, 12(7), 072309. doi:10.1063/1.1947447Roman, J. E., Kammerer, M., Merz, F., & Jenko, F. (2010). Fast eigenvalue calculations in a massively parallel plasma turbulence code. Parallel Computing, 36(5-6), 339-358. doi:10.1016/j.parco.2009.12.001Merz, F., & Jenko, F. (2010). Nonlinear interplay of TEM and ITG turbulence and its effect on transport. Nuclear Fusion, 50(5), 054005. doi:10.1088/0029-5515/50/5/054005Simoncini, V., & Szyld, D. B. (2002). Flexible Inner-Outer Krylov Subspace Methods. SIAM Journal on Numerical Analysis, 40(6), 2219-2239. doi:10.1137/s0036142902401074Morgan, R. B. (2002). GMRES with Deflated Restarting. SIAM Journal on Scientific Computing, 24(1), 20-37. doi:10.1137/s106482759936465
    • …
    corecore