5,113 research outputs found

    Variable neighbourhood search for the minimum labelling Steiner tree problem

    Get PDF
    We present a study on heuristic solution approaches to the minimum labelling Steiner tree problem, an NP-hard graph problem related to the minimum labelling spanning tree problem. Given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes of the graph, whose edges have the smallest number of distinct labels. Such a model may be used to represent many real world problems in telecommunications and multimodal transportation networks. Several metaheuristics are proposed and evaluated. The approaches are compared to the widely adopted Pilot Method and it is shown that the Variable Neighbourhood Search metaheuristic is the most effective approach to the problem, obtaining high quality solutions in short computational running times

    A Novel Genetic Algorithm using Helper Objectives for the 0-1 Knapsack Problem

    Full text link
    The 0-1 knapsack problem is a well-known combinatorial optimisation problem. Approximation algorithms have been designed for solving it and they return provably good solutions within polynomial time. On the other hand, genetic algorithms are well suited for solving the knapsack problem and they find reasonably good solutions quickly. A naturally arising question is whether genetic algorithms are able to find solutions as good as approximation algorithms do. This paper presents a novel multi-objective optimisation genetic algorithm for solving the 0-1 knapsack problem. Experiment results show that the new algorithm outperforms its rivals, the greedy algorithm, mixed strategy genetic algorithm, and greedy algorithm + mixed strategy genetic algorithm

    Developing Efficient Metaheuristics for Communication Network Problems by using Problem-specific Knowledge

    Full text link
    Metaheuristics, such as evolutionary algorithms or simulated annealing, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult optimization problems. To show high performance, metaheuristics need to be adapted to the properties of the problem at hand. This paper illustrates how efficient metaheuristics can be developed for communication network problems by utilizing problem-specific knowledge for the design of a high-quality problem representation. The minimum communication spanning tree (MCST) problem finds a communication spanning tree that connects all nodes and satisfies their communication requirements for a minimum total cost. An investigation into the properties of the problem reveals that optimum solutions are similar to the minimum spanning tree (MST). Consequently, a problem-specific representation, the link biased (LB) encoding, is developed, which represents trees as a list of floats. The LB encoding makes use of the knowledge that optimum solutions are similar to the MST, and encodes trees that are similar to the MST with a higher probability. Experimental results for different types of metaheuristics show that metaheuristics using the LB-encoding efficiently solve existing MCST problem instances from the literature, as well as randomly generated MCST problems of different sizes and types

    On the application of estimation of distribution algorithms to multi-marker tagging SNP selection

    Get PDF
    This paper presents an algorithm for the automatic selection of a minimal subset of tagging single nucleotide polymorphisms (SNPs) using an estimation of distribution algorithm (EDA). The EDA stochastically searches the constrained space of possible feasible solutions and takes advantage of the underlying topological structure defined by the SNP correlations to model the problem interactions. The algorithm is evaluated across the HapMap reference panel data sets. The introduced algorithm is effective for the identification of minimal multi-marker SNP sets, which considerably reduce the dimension of the tagging SNP set in comparison with single-marker sets. New reduced tagging sets are obtained for all the HapMap SNP regions considered. We also show that the information extracted from the interaction graph representing the correlations between the SNPs can help to improve the efficiency of the optimization algorithm. keywords: SNPs, tagging SNP selection, multi-marker selection, estimation of distribution algorithms, HapMap
    corecore