122,152 research outputs found

    Parallel Repetition for the GHZ Game: A Simpler Proof

    Get PDF
    We give a new proof of the fact that the parallel repetition of the (3-player) GHZ game reduces the value of the game to zero polynomially quickly. That is, we show that the value of the n-fold GHZ game is at most n^{-?(1)}. This was first established by Holmgren and Raz [Holmgren and Raz, 2020]. We present a new proof of this theorem that we believe to be simpler and more direct. Unlike most previous works on parallel repetition, our proof makes no use of information theory, and relies on the use of Fourier analysis. The GHZ game [Greenberger et al., 1989] has played a foundational role in the understanding of quantum information theory, due in part to the fact that quantum strategies can win the GHZ game with probability 1. It is possible that improved parallel repetition bounds may find applications in this setting. Recently, Dinur, Harsha, Venkat, and Yuen [Dinur et al., 2017] highlighted the GHZ game as a simple three-player game, which is in some sense maximally far from the class of multi-player games whose behavior under parallel repetition is well understood. Dinur et al. conjectured that parallel repetition decreases the value of the GHZ game exponentially quickly, and speculated that progress on proving this would shed light on parallel repetition for general multi-player (multi-prover) games

    A parallel repetition theorem for all entangled games

    Get PDF
    The behavior of games repeated in parallel, when played with quantumly entangled players, has received much attention in recent years. Quantum analogues of Raz's classical parallel repetition theorem have been proved for many special classes of games. However, for general entangled games no parallel repetition theorem was known. We prove that the entangled value of a two-player game GG repeated nn times in parallel is at most cGn1/4lognc_G n^{-1/4} \log n for a constant cGc_G depending on GG, provided that the entangled value of GG is less than 1. In particular, this gives the first proof that the entangled value of a parallel repeated game must converge to 0 for all games whose entangled value is less than 1. Central to our proof is a combination of both classical and quantum correlated sampling.Comment: To appear in the 43rd International Colloquium on Automata, Languages, and Programming (ICALP

    Parallel repetition via fortification: analytic view and the quantum case

    Get PDF
    In a recent work, Moshkovitz [FOCS'14] presented a transformation n two-player games called "fortification", and gave an elementary proof of an (exponential decay) parallel repetition theorem for fortified two-player projection games. In this paper, we give an analytic reformulation of Moshkovitz's fortification framework, which was originally cast in combinatorial terms. This reformulation allows us to expand the scope of the fortification method to new settings. First, we show any game (not just projection games) can be fortified, and give a simple proof of parallel repetition for general fortified games. Then, we prove parallel repetition and fortification theorems for games with players sharing quantum entanglement, as well as games with more than two players. This gives a new gap amplification method for general games in the quantum and multiplayer settings, which has recently received much interest. An important component of our work is a variant of the fortification transformation, called "ordered fortification", that preserves the entangled value of a game. The original fortification of Moshkovitz does not in general preserve the entangled value of a game, and this was a barrier to extending the fortification framework to the quantum setting

    Portable Asteroids on Hypercube Or Transputers

    Get PDF
    A multi-player 3D Asteroids video game designed to be used as a testbed for evaluating controller algorithms was described in [l.] The original version of the game and a separate interactive 3D graphics interface for a human player were implemented, based on CrOS III and VERTEX, on an NCUBE-l hypercube equipped with a parallel Real-Time Graphics board. The Asteroids and interactive graphics interface programs are examples of parallel programs which communicate with each other in a space-shared multi-processor environment. We have successfully ported the Asteroids and the interactive graphics interface to run on NCUBE using ParaSoft EXPRESS. The new version of these programs were further ported to run on a SUN 386i with an add-on Transputer board. We present general design considerations that enable easy migration of communicating parallel programs to any other hardware platform that runs EXPRESS. We also report specific experience of porting Asteroids and an associated interactive player interface program on an NCUBE hypercube to a SUN 386i Transputer-based system, with no modification of codes

    An Algorithmic Analysis of the Honey-Bee Game

    Get PDF
    The Honey-Bee game is a two-player board game that is played on a connected hexagonal colored grid or (in a generalized setting) on a connected graph with colored nodes. In a single move, a player calls a color and thereby conquers all the nodes of that color that are adjacent to his own current territory. Both players want to conquer the majority of the nodes. We show that winning the game is PSPACE-hard in general, NP-hard on series-parallel graphs, but easy on outerplanar graphs. In the solitaire version, the goal of the single player is to conquer the entire graph with the minimum number of moves. The solitaire version is NP-hard on trees and split graphs, but can be solved in polynomial time on co-comparability graphs.Comment: 20 pages, 9 figure

    Multiplayer Parallel Repetition for Expanding Games

    Get PDF
    We investigate the value of parallel repetition of one-round games with any number of players k>=2. It has been an open question whether an analogue of Raz\u27s Parallel Repetition Theorem holds for games with more than two players, i.e., whether the value of the repeated game decays exponentially with the number of repetitions. Verbitsky has shown, via a reduction to the density Hales-Jewett theorem, that the value of the repeated game must approach zero, as the number of repetitions increases. However, the rate of decay obtained in this way is extremely slow, and it is an open question whether the true rate is exponential as is the case for all two-player games. Exponential decay bounds are known for several special cases of multi-player games, e.g., free games and anchored games. In this work, we identify a certain expansion property of the base game and show all games with this property satisfy an exponential decay parallel repetition bound. Free games and anchored games satisfy this expansion property, and thus our parallel repetition theorem reproduces all earlier exponential-decay bounds for multiplayer games. More generally, our parallel repetition bound applies to all multiplayer games that are *connected* in a certain sense. We also describe a very simple game, called the GHZ game, that does not satisfy this connectivity property, and for which we do not know an exponential decay bound. We suspect that progress on bounding the value of this the parallel repetition of the GHZ game will lead to further progress on the general question

    Parallel Repetition of Entangled Games with Exponential Decay via the Superposed Information Cost

    Get PDF
    In a two-player game, two cooperating but non communicating players, Alice and Bob, receive inputs taken from a probability distribution. Each of them produces an output and they win the game if they satisfy some predicate on their inputs/outputs. The entangled value ω(G)\omega^*(G) of a game GG is the maximum probability that Alice and Bob can win the game if they are allowed to share an entangled state prior to receiving their inputs. The nn-fold parallel repetition GnG^n of GG consists of nn instances of GG where the players receive all the inputs at the same time and produce all the outputs at the same time. They win GnG^n if they win each instance of GG. In this paper we show that for any game GG such that ω(G)=1ε<1\omega^*(G) = 1 - \varepsilon < 1, ω(Gn)\omega^*(G^n) decreases exponentially in nn. First, for any game GG on the uniform distribution, we show that ω(Gn)=(1ε2)Ω(nlog(IO)log(ε))\omega^*(G^n) = (1 - \varepsilon^2)^{\Omega\left(\frac{n}{\log(|I||O|)} - |\log(\varepsilon)|\right)}, where I|I| and O|O| are the sizes of the input and output sets. From this result, we show that for any entangled game GG, ω(Gn)(1ε2)Ω(nQlog(IO)log(ε)Q)\omega^*(G^n) \le (1 - \varepsilon^2)^{\Omega(\frac{n}{Q\log(|I||O|)} - \frac{|\log(\varepsilon)|}{Q})} where pp is the input distribution of GG and Q=I2maxxypxy2minxypxyQ= \frac{|I|^2 \max_{xy} p_{xy}^2 }{\min_{xy} p_{xy} }. This implies parallel repetition with exponential decay as long as minxy{pxy}0\min_{xy} \{p_{xy}\} \neq 0 for general games. To prove this parallel repetition, we introduce the concept of \emph{Superposed Information Cost} for entangled games which is inspired from the information cost used in communication complexity.Comment: In the first version of this paper we presented a different, stronger Corollary 1 but due to an error in the proof we had to modify it in the second version. This third version is a minor update. We correct some typos and re-introduce a proof accidentally commented out in the second versio

    Quantum Coin Hedging, and a Counter Measure

    Get PDF
    A quantum board game is a multi-round protocol between a single quantum player against the quantum board. Molina and Watrous discovered quantum hedging. They gave an example for perfect quantum hedging: a board game with winning probability < 1, such that the player can win with certainty at least 1-out-of-2 quantum board games played in parallel. Here we show that perfect quantum hedging occurs in a cryptographic protocol - quantum coin flipping. For this reason, when cryptographic protocols are composed, hedging may introduce serious challenges into their analysis. We also show that hedging cannot occur when playing two-outcome board games in sequence. This is done by showing a formula for the value of sequential two-outcome board games, which depends only on the optimal value of a single board game; this formula applies in a more general setting, in which hedging is only a special case

    Statistical GGP Game Decomposition

    Get PDF
    International audienceThis paper presents a statistical approach for the decomposition of games in the General Game Playing framework. General game players can drastically decrease game search cost if they hold a decomposed version of the game. Previous works on decomposition rely on syn-tactical structures, which can be missing from the game description, or on the disjunctive normal form of the rules, which is very costly to compute. We offer an approach to decompose single or multi-player games which can handle the different classes of compound games described in Game Description Language (parallel games, serial games, multiple games). Our method is based on a statistical analysis of relations between actions and fluents. We tested our program on 597 games. Given a timeout of 1 hour and few playouts (1k), our method successfully provides an expert-like decomposition for 521 of them. With a 1 minute timeout and 5k playouts, it provides a decomposition for 434 of them
    corecore