22,933 research outputs found

    Effect of supervised exercise on physical function and balance in patients with intermittent claudication

    Get PDF
    Background The aim of the study was to identify whether a standard supervised exercise programme (SEP) for patients with intermittent claudication improved specific measures of functional performance including balance. Methods A prospective observational study was performed at a single tertiary vascular centre. Patients with symptomatic intermittent claudication (Rutherford grades 1–3) were recruited to the study. Participants were assessed at baseline (before SEP) and 3, 6 and 12 months afterwards for markers of lower-limb ischaemia (treadmill walking distance and ankle : brachial pressure index), physical function (6-min walk, Timed Up and Go test, and Short Physical Performance Battery (SPPB) score), balance impairment using computerized dynamic posturography with the Sensory Organization Test (SOT), and quality of life (VascuQoL and Short Form 36). Results Fifty-one participants underwent SEP, which significantly improved initial treadmill walking distance (P = 0·001). Enrolment in a SEP also resulted in improvements in physical function as determined by 6-min maximum walking distance (P = 0·006), SPPB score (P < 0·001), and some domains of both generic (bodily pain, P = 0·025) and disease-specific (social domain, P = 0·039) quality of life. Significant improvements were also noted in balance, as determined by the SOT (P < 0·001). Conclusion Supervised exercise improves both physical function and balance impairment

    The Anthropomorphic Hand Assessment Protocol (AHAP)

    Get PDF
    The progress in the development of anthropomorphic hands for robotic and prosthetic applications has not been followed by a parallel development of objective methods to evaluate their performance. The need for benchmarking in grasping research has been recognized by the robotics community as an important topic. In this study we present the Anthropomorphic Hand Assessment Protocol (AHAP) to address this need by providing a measure for quantifying the grasping ability of artificial hands and comparing hand designs. To this end, the AHAP uses 25 objects from the publicly available Yale-CMU-Berkeley Object and Model Set thereby enabling replicability. It is composed of 26 postures/tasks involving grasping with the eight most relevant human grasp types and two non-grasping postures. The AHAP allows to quantify the anthropomorphism and functionality of artificial hands through a numerical Grasping Ability Score (GAS). The AHAP was tested with different hands, the first version of the hand of the humanoid robot ARMAR-6 with three different configurations resulting from attachment of pads to fingertips and palm as well as the two versions of the KIT Prosthetic Hand. The benchmark was used to demonstrate the improvements of these hands in aspects like the grasping surface, the grasp force and the finger kinematics. The reliability, consistency and responsiveness of the benchmark have been statistically analyzed, indicating that the AHAP is a powerful tool for evaluating and comparing different artificial hand designs

    Exercises using a touchscreen tablet application improved functional ability more than an exercise program prescribed on paper in people after surgical carpal tunnel release: a randomised trial

    Get PDF
    Question: In people who have undergone surgical carpal tunnel release, do sensorimotor-based exercises performed on the touchscreen of a tablet device improve outcomes more than a conventional home exercise program prescribed on paper? Design: Randomised, parallel-group trial with concealed allocation, assessor blinding, and intention-to-treat analysis. Participants: Fifty participants within 10 days of surgical carpal tunnel release. Intervention: Each participant was prescribed a 4-week home exercise program. Participants in the experimental group received the ReHand tablet application, which administered and monitored exercises via the touchscreen. The control group was prescribed a home exercise program on paper, as is usual practice in the public hospital system. Outcome measures: The primary outcome was functional ability of the hand, reported using the shortened form of the Disabilities of the Arm, Shoulder and Hand (QuickDASH) questionnaire. Secondary outcomes were grip strength, pain intensity measured on a 10-cm visual analogue scale, and dexterity measured with the Nine-Hole Peg Test. Outcomes were measured by a blinded assessor at baseline and at the end of the 4-week intervention period. Results: At Week 4, functional ability improved significantly more in the experimental group than the control group (MD –21, 95% CI –33 to –9) on the QuickDASH score (0 to 100). Although the mean estimates of effect on the secondary outcome also all favoured the experimental group, none reached statistical significance: grip strength (MD 5.6 kg, 95% CI –0.5 to 11.7), pain (MD –1.4 cm, 95% CI –2.9 to 0.1), and dexterity (MD –1.3 seconds, 95% CI –3.7 to 1.1). Conclusion: Use of the ReHand tablet application for early rehabilitation after carpal tunnel release is more effective in the recovery of functional ability than a conventional home exercise program. It remains unclear whether there are any benefits in grip strength, pain or dexterity. Trial registration: ACTRN12618001887268

    Programming Skeletal Muscle Metabolic Flexibility in Offspring of Male Rats in Response to Maternal Consumption of Slow Digesting Carbohydrates during Pregnancy

    Get PDF
    Skeletal muscle plays a relevant role in metabolic flexibility and fuel usage and the associated muscle metabolic inflexibility due to high-fat diets contributing to obesity and type 2 diabetes. Previous research from our group indicates that a high-fat and rapid-digesting carbohydrate diet during pregnancy promotes an excessive adipogenesis and also increases the risk of non-alcoholic fatty liver disease in the offspring. This effect can be counteracted by diets containing carbohydrates with similar glycemic load but lower digestion rates. To address the role of the skeletal muscle in these experimental settings, pregnant rats were fed high-fat diets containing carbohydrates with similar glycemic load but different digestion rates, a high fat containing rapid-digesting carbohydrates diet (HF/RD diet) or a high fat containing slow-digesting carbohydrates diet (HF/SD diet). After weaning, male offspring were fed a standard diet for 3 weeks (weaning) or 10 weeks (adolescence) and the impact of the maternal HF/RD and HF/SD diets on the metabolism, signaling pathways and muscle transcriptome was analyzed. The HF/SD offspring displayed better muscle features compared with the HF/RD group, showing a higher muscle mass, myosin content and differentiation markers that translated into a greater grip strength. In the HF/SD group, metabolic changes such as a higher expression of fatty acids (FAT/CD36) and glucose (GLUT4) transporters, an enhanced glycogen content, as well as changes in regulatory enzymes such as muscle pyruvate kinase and pyruvate dehydrogenase kinase 4 were found, supporting an increased muscle metabolic flexibility and improved muscle performance. The analysis of signaling pathways was consistent with a better insulin sensitivity in the muscle of the HF/SD group. Furthermore, increased expression of genes involved in pathways leading to muscle differentiation, muscle mass regulation, extracellular matrix content and insulin sensitivity were detected in the HF/SD group when compared with HF/RD animals. In the HF/SD group, the upregulation of the ElaV1/HuR gene could be one of the main regulators in the positive effects of the diet in early programming on the offspring. The long-lasting programming effects of the HF/SD diet during pregnancy may depend on a coordinated gene regulation, modulation of signaling pathways and metabolic flexibility that lead to an improved muscle functionality. The dietary early programming associated to HF/SD diet has synergic and positive crosstalk effects in several tissues, mainly muscle, liver and adipose tissue, contributing to maintain the whole body homeostasis in the offspring.European Union’s Seventh Framework Programme (FP7/2007–2013

    Do ACE inhibitors improve the response to exercise training in functionally impaired older adults? A randomized controlled trial

    Get PDF
    <br>Background: Loss of muscle mass and strength with ageing is a major cause for falls, disability, and morbidity in older people. Previous studies have found that angiotensin-converting enzyme inhibitors (ACEi) may improve physical function in older people. It is unclear whether ACEi provide additional benefit when added to a standard exercise training program. We examined the effects of ACEi therapy on physical function in older people undergoing exercise training.</br> <b>Methods:</b> Community-dwelling people aged ≄65 years with functional impairment were recruited through general (family) practices. All participants received progressive exercise training. Participants were randomized to receive either 4 mg perindopril or matching placebo daily for 20 weeks. The primary outcome was between-group change in 6-minute walk distance from baseline to 20 weeks. Secondary outcomes included changes in Short Physical Performance Battery, handgrip and quadriceps strength, self-reported quality of life using the EQ-5D, and functional impairment measured using the Functional Limitations Profile.<p></p> <b>Results:</b> A total of 170 participants (n = 86 perindopril, n = 84 placebo) were randomized. Mean age was 75.7 (standard deviation [SD] 6.8) years. Baseline 6-minute walk distance was 306 m (SD 99). Both groups increased their walk distance (by 29.6 m perindopril, 36.4 m placebo group) at 20 weeks, but there was no statistically significant treatment effect between groups (−8.6m [95% confidence interval: −30.1, 12.9], p = .43). No statistically significant treatment effects were observed between groups for the secondary outcomes. Adverse events leading to withdrawal were few (n = 0 perindopril, n = 4 placebo).<p></p> <b>Interpretation:</b> ACE inhibitors did not enhance the effect of exercise training on physical function in functionally impaired older people.<p></p&gt

    Collection of anthropometry from older and physically impaired persons: traditional methods versus TC2 3-D body scanner

    Get PDF
    With advances in technology it is now possible to collect a wide range of anthropometric data, to a high degree of accuracy, using 3D light-based body scanners. This gives the potential to speed up the collection of anthropometric data for design purposes, to decrease processing time and data input required, and to reduce error due to inaccuracy of measurements taken using more traditional methods and equipment (anthropometer, stadiometer and sitting height table). However, when the data collection concerns older and/or physically impaired people there are serious issues for consideration when deciding on the best method to collect anthropometry. This paper discusses the issues arising when collecting data using both traditional methods of data collection and a first use by the experimental team of the TC2 3D body scanner, when faced with a ‘non-standard’ sample, during an EPSRC funded research project into issues surrounding transport usage by older and physically impaired people. Relevance to industry: Designing products, environments and services so that the increasing ageing population, as well as the physically impaired, can use them increases the potential market. To do this, up-to-date and relevant anthropometry is often needed. 3D light-based bodyscanners offer a potential fast way of obtaining this data, and this paper discusses some of the issues with using one scanner with older and disabled people

    Helical axis analysis to quantify humeral kinematics during shoulder rotation.

    Get PDF
    © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Information pertaining to the helical axis during humeral kinematics during shoulder rotation may be of benefit to better understand conditions such as shoulder instability. The aim of this study is to quantify the behavior of humeral rotations using helical axis (HA) parameters in three different conditions. A total of 19 people without shoulder symptoms participated in the experiment. Shoulder kinematics was measured with an optoelectric motion capture system. The subjects performed three different full range rotations of the shoulder. The shoulder movements were analyzed with the HA technique. Four parameters were extracted from the HA of the shoulder during three different full-range rotations: range of movement (RoM), mean angle (MA), axis dispersion (MDD), and distance of their center from the shoulder (D). No significant differences were observed in the RoM for each condition between left and right side. The MA of the axis was significantly lower on the right side compared to the left in each of the three conditions. The MDD was also lower for the right side compared to the left side in each of the three conditions.The four parameters proposed for the analysis of shoulder kinematics showed to be promising indicators of shoulder instability.Peer reviewe

    Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction

    Get PDF
    This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs) by using genetic algorithms (GA). The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate) for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer) ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC) was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.). Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.This research was supported by the National Science Council (NSC) of Taiwan (Grant no. NSC98-2915-I-155-005), the Department of Education grant of Excellent Teaching Program of Yuan Ze University (Grant no. 217517) and the Center for Dynamical Biomarkers and Translational Medicine supported by National Science Council (Grant no. NSC 100- 2911-I-008-001)
    • 

    corecore