2,784 research outputs found

    Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems

    Full text link
    [EN] Industrial production scheduling problems are challenges that researchers have been trying to solve for decades. Many practical scheduling problems such as the hybrid flowshop are ATP-hard. As a result, researchers resort to metaheuristics to obtain effective and efficient solutions. The traditional design process of metaheuristics is mainly manual, often metaphor-based, biased by previous experience and prone to producing overly tailored methods that only work well on the tested problems and objectives. In this paper, we use an Automatic Algorithm Design (AAD) methodology to eliminate these limitations. AAD is capable of composing algorithms from components with minimal human intervention. We test the proposed MD for three different optimization objectives in the hybrid flowshop. Comprehensive computational and statistical testing demonstrates that automatically designed algorithms outperform specifically tailored state-of-the-art methods for the tested objectives in most cases.Pedro Alfaro-Fernandez and Ruben Ruiz are partially supported by the Spanish Ministry of Science, Innovation, and Universities, under the project "OPTEP-Port Terminal Operations Optimization" (No. RTI2018-094940-B-I00) financed with FEDER funds and under grants BES-2013-064858 and EEBB-I-15-10089. This work was supported by the COMEX project (P7/36) within the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office. Thomas Stiitzle acknowledges support from the Belgian F.R.S.-FNRS, of which he is a Research Director.Alfaro-Fernandez, P.; Ruiz García, R.; Pagnozzi, F.; Stützle, T. (2020). Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems. European Journal of Operational Research. 282(3):835-845. https://doi.org/10.1016/j.ejor.2019.10.004S8358452823Bożejko, W., Gnatowski, A., Niżyński, T., Affenzeller, M., & Beham, A. (2018). Local Optima Networks in Solving Algorithm Selection Problem for TSP. Advances in Intelligent Systems and Computing, 83-93. doi:10.1007/978-3-319-91446-6_9Bożejko, W., Pempera, J., & Smutnicki, C. (2013). Parallel tabu search algorithm for the hybrid flow shop problem. Computers & Industrial Engineering, 65(3), 466-474. doi:10.1016/j.cie.2013.04.007Burke, E. K., Hyde, M. R., & Kendall, G. (2012). Grammatical Evolution of Local Search Heuristics. IEEE Transactions on Evolutionary Computation, 16(3), 406-417. doi:10.1109/tevc.2011.2160401Cahon, S., Melab, N., & Talbi, E.-G. (2004). ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics. Journal of Heuristics, 10(3), 357-380. doi:10.1023/b:heur.0000026900.92269.ecCarlier, J., & Neron, E. (2000). An Exact Method for Solving the Multi-Processor Flow-Shop. RAIRO - Operations Research, 34(1), 1-25. doi:10.1051/ro:2000103Chung, T.-P., & Liao, C.-J. (2013). An immunoglobulin-based artificial immune system for solving the hybrid flow shop problem. Applied Soft Computing, 13(8), 3729-3736. doi:10.1016/j.asoc.2013.03.006Cui, Z., & Gu, X. (2015). An improved discrete artificial bee colony algorithm to minimize the makespan on hybrid flow shop problems. Neurocomputing, 148, 248-259. doi:10.1016/j.neucom.2013.07.056Ding, J.-Y., Song, S., Gupta, J. N. D., Zhang, R., Chiong, R., & Wu, C. (2015). An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604-613. doi:10.1016/j.asoc.2015.02.006Dubois-Lacoste, J., López-Ibáñez, M., & Stützle, T. (2011). A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research, 38(8), 1219-1236. doi:10.1016/j.cor.2010.10.008Dubois-Lacoste, J., Pagnozzi, F., & Stützle, T. (2017). An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem. Computers & Operations Research, 81, 160-166. doi:10.1016/j.cor.2016.12.021Gupta, J. N. D. (1988). Two-Stage, Hybrid Flowshop Scheduling Problem. Journal of the Operational Research Society, 39(4), 359-364. doi:10.1057/jors.1988.63Gupta, J. N. D., & Stafford, E. F. (2006). Flowshop scheduling research after five decades. European Journal of Operational Research, 169(3), 699-711. doi:10.1016/j.ejor.2005.02.001Hidri, L., & Haouari, M. (2011). Bounding strategies for the hybrid flow shop scheduling problem. Applied Mathematics and Computation, 217(21), 8248-8263. doi:10.1016/j.amc.2011.02.108Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stuetzle, T. (2009). ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research, 36, 267-306. doi:10.1613/jair.2861Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68. doi:10.1002/nav.3800010110Khalouli, S., Ghedjati, F., & Hamzaoui, A. (2010). A meta-heuristic approach to solve a JIT scheduling problem in hybrid flow shop. Engineering Applications of Artificial Intelligence, 23(5), 765-771. doi:10.1016/j.engappai.2010.01.008KhudaBukhsh, A. R., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2016). SATenstein: Automatically building local search SAT solvers from components. Artificial Intelligence, 232, 20-42. doi:10.1016/j.artint.2015.11.002Li, J., Pan, Q., & Wang, F. (2014). A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem. Applied Soft Computing, 24, 63-77. doi:10.1016/j.asoc.2014.07.005Liao, C.-J., Tjandradjaja, E., & Chung, T.-P. (2012). An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Applied Soft Computing, 12(6), 1755-1764. doi:10.1016/j.asoc.2012.01.011Lopez-Ibanez, M., & Stutzle, T. (2012). The Automatic Design of Multiobjective Ant Colony Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 16(6), 861-875. doi:10.1109/tevc.2011.2182651López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43-58. doi:10.1016/j.orp.2016.09.002Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). A Discrete Firefly Algorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems. IEEE Transactions on Evolutionary Computation, 18(2), 301-305. doi:10.1109/tevc.2013.2240304Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing, 19, 93-101. doi:10.1016/j.asoc.2014.02.005Marichelvam, M. K., Prabaharan, T., Yang, X. S., & Geetha, M. (2013). Solving hybrid flow shop scheduling problems using bat algorithm. International Journal of Logistics Economics and Globalisation, 5(1), 15. doi:10.1504/ijleg.2013.054428Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., & Stützle, T. (2014). Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Computers & Operations Research, 51, 190-199. doi:10.1016/j.cor.2014.05.020Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. doi:10.1016/0305-0483(83)90088-9Pan, Q.-K., & Dong, Y. (2014). An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation. Information Sciences, 277, 643-655. doi:10.1016/j.ins.2014.02.152Pan, Q.-K., Ruiz, R., & Alfaro-Fernández, P. (2017). Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Computers & Operations Research, 80, 50-60. doi:10.1016/j.cor.2016.11.022Pan, Q.-K., Wang, L., Li, J.-Q., & Duan, J.-H. (2014). A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation. Omega, 45, 42-56. doi:10.1016/j.omega.2013.12.004Rajendran, C., & Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. European Journal of Operational Research, 103(1), 129-138. doi:10.1016/s0377-2217(96)00273-1Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1-18. doi:10.1016/j.ejor.2009.09.024Sörensen, K. (2013). Metaheuristics-the metaphor exposed. International Transactions in Operational Research, 22(1), 3-18. doi:10.1111/itor.12001Vignier, A., Billaut, J.-C., & Proust, C. (1999). Les problèmes d’ordonnancement de type flow-shop hybride : état de l’art. RAIRO - Operations Research, 33(2), 117-183. doi:10.1051/ro:1999108Wang, S., Wang, L., Liu, M., & Xu, Y. (2013). An enhanced estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with identical parallel machines. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2043-2056. doi:10.1007/s00170-013-4819-yXu, Y., Wang, L., Wang, S., & Liu, M. (2013). An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines. Engineering Optimization, 45(12), 1409-1430. doi:10.1080/0305215x.2012.73778

    Efficient heuristics for the parallel blocking flow shop scheduling problem

    Get PDF
    We consider the NP-hard problem of scheduling n jobs in F identical parallel flow shops, each consisting of a series of m machines, and doing so with a blocking constraint. The applied criterion is to minimize the makespan, i.e., the maximum completion time of all the jobs in F flow shops (lines). The Parallel Flow Shop Scheduling Problem (PFSP) is conceptually similar to another problem known in the literature as the Distributed Permutation Flow Shop Scheduling Problem (DPFSP), which allows modeling the scheduling process in companies with more than one factory, each factory with a flow shop configuration. Therefore, the proposed methods can solve the scheduling problem under the blocking constraint in both situations, which, to the best of our knowledge, has not been studied previously. In this paper, we propose a mathematical model along with some constructive and improvement heuristics to solve the parallel blocking flow shop problem (PBFSP) and thus minimize the maximum completion time among lines. The proposed constructive procedures use two approaches that are totally different from those proposed in the literature. These methods are used as initial solution procedures of an iterated local search (ILS) and an iterated greedy algorithm (IGA), both of which are combined with a variable neighborhood search (VNS). The proposed constructive procedure and the improved methods take into account the characteristics of the problem. The computational evaluation demonstrates that both of them –especially the IGA– perform considerably better than those algorithms adapted from the DPFSP literature.Peer ReviewedPostprint (author's final draft

    The distributed assembly permutation flowshop scheduling problem

    Full text link
    Nowadays, improving the management of complex supply chains is a key to become competitive in the twenty-first century global market. Supply chains are composed of multi-plant facilities that must be coordinated and synchronised to cut waste and lead times. This paper proposes a Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP) with two stages to model and study complex supply chains. This problem is a generalisation of the Distributed Permutation Flowshop Scheduling Problem (DPFSP). The first stage of the DAPFSP is composed of f identical production factories. Each one is a flowshop that produces jobs to be assembled into final products in a second assembly stage. The objective is to minimise the makespan. We present first a Mixed Integer Linear Programming model (MILP). Three constructive algorithms are proposed. Finally, a Variable Neighbourhood Descent (VND) algorithm has been designed and tested by a comprehensive ANOVA statistical analysis. The results show that the VND algorithm offers good performance to solve this scheduling problem.Ruben Ruiz is partially supported by the Spanish Ministry of Science and Innovation, under the project 'RESULT - Realistic Extended Scheduling Using Light Techniques' with reference DPI2012-36243-C02-01. Carlos Andres-Romano is partially supported by the Spanish Ministry of Science and Innovation, under the project 'INSAMBLE' - Scheduling at assembly/disassembly synchronised supply chains with reference DPI2011-27633.Hatami, S.; Ruiz García, R.; Andrés Romano, C. (2013). The distributed assembly permutation flowshop scheduling problem. International Journal of Production Research. 51(17):5292-5308. https://doi.org/10.1080/00207543.2013.807955S529253085117Basso, D., Chiarandini, M., & Salmaso, L. (2007). Synchronized permutation tests in replicated designs. Journal of Statistical Planning and Inference, 137(8), 2564-2578. doi:10.1016/j.jspi.2006.04.016Biggs, D., De Ville, B., & Suen, E. (1991). A method of choosing multiway partitions for classification and decision trees. Journal of Applied Statistics, 18(1), 49-62. doi:10.1080/02664769100000005Chan, F. T. S., Chung, S. H., Chan, L. Y., Finke, G., & Tiwari, M. K. (2006). Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach. Robotics and Computer-Integrated Manufacturing, 22(5-6), 493-504. doi:10.1016/j.rcim.2005.11.005Chan, F. T. S., Chung, S. H., & Chan, P. L. Y. (2006). Application of genetic algorithms with dominant genes in a distributed scheduling problem in flexible manufacturing systems. International Journal of Production Research, 44(3), 523-543. doi:10.1080/00207540500319229Liao, C.-J., & Liao, L.-M. (2008). Improved MILP models for two-machine flowshop with batch processing machines. Mathematical and Computer Modelling, 48(7-8), 1254-1264. doi:10.1016/j.mcm.2008.01.001Framinan, J. M., & Leisten, R. (2003). An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega, 31(4), 311-317. doi:10.1016/s0305-0483(03)00047-1Gao, J., & Chen, R. (2011). A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem. International Journal of Computational Intelligence Systems, 4(4), 497-508. doi:10.1080/18756891.2011.9727808Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130(3), 449-467. doi:10.1016/s0377-2217(00)00100-4Hariri, A. M. A., & Potts, C. N. (1997). A branch and bound algorithm for the two-stage assembly scheduling problem. European Journal of Operational Research, 103(3), 547-556. doi:10.1016/s0377-2217(96)00312-8Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2002). Web-based Multi-functional Scheduling System for a Distributed Manufacturing Environment. Concurrent Engineering, 10(1), 27-39. doi:10.1177/1063293x02010001054Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., & Zhang, Y. F. (2003). Journal of Intelligent Manufacturing, 14(3/4), 351-362. doi:10.1023/a:1024653810491Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2007). Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed manufacturing systems. Computers & Industrial Engineering, 53(2), 313-320. doi:10.1016/j.cie.2007.06.024Kass, G. V. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29(2), 119. doi:10.2307/2986296Lee, C.-Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem. Management Science, 39(5), 616-625. doi:10.1287/mnsc.39.5.616Morgan, J. N., & Sonquist, J. A. (1963). Problems in the Analysis of Survey Data, and a Proposal. Journal of the American Statistical Association, 58(302), 415-434. doi:10.1080/01621459.1963.10500855Pan, Q.-K., & Ruiz, R. (2012). Local search methods for the flowshop scheduling problem with flowtime minimization. European Journal of Operational Research, 222(1), 31-43. doi:10.1016/j.ejor.2012.04.034Potts, C. N., Sevast’janov, S. V., Strusevich, V. A., Van Wassenhove, L. N., & Zwaneveld, C. M. (1995). The Two-Stage Assembly Scheduling Problem: Complexity and Approximation. Operations Research, 43(2), 346-355. doi:10.1287/opre.43.2.346Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151-1175. doi:10.1016/j.cor.2006.07.014Ruiz, R., & Andrés-Romano, C. (2011). Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology, 57(5-8), 777-794. doi:10.1007/s00170-011-3318-2Stafford, E. F., Tseng, F. T., & Gupta, J. N. D. (2005). Comparative evaluation of MILP flowshop models. Journal of the Operational Research Society, 56(1), 88-101. doi:10.1057/palgrave.jors.2601805Tozkapan, A., Kırca, Ö., & Chung, C.-S. (2003). A branch and bound algorithm to minimize the total weighted flowtime for the two-stage assembly scheduling problem. Computers & Operations Research, 30(2), 309-320. doi:10.1016/s0305-0548(01)00098-3Tseng, F. T., & Stafford, E. F. (2008). New MILP models for the permutation flowshop problem. Journal of the Operational Research Society, 59(10), 1373-1386. doi:10.1057/palgrave.jors.260245

    A GPU-accelerated Branch-and-Bound Algorithm for the Flow-Shop Scheduling Problem

    Get PDF
    Branch-and-Bound (B&B) algorithms are time intensive tree-based exploration methods for solving to optimality combinatorial optimization problems. In this paper, we investigate the use of GPU computing as a major complementary way to speed up those methods. The focus is put on the bounding mechanism of B&B algorithms, which is the most time consuming part of their exploration process. We propose a parallel B&B algorithm based on a GPU-accelerated bounding model. The proposed approach concentrate on optimizing data access management to further improve the performance of the bounding mechanism which uses large and intermediate data sets that do not completely fit in GPU memory. Extensive experiments of the contribution have been carried out on well known FSP benchmarks using an Nvidia Tesla C2050 GPU card. We compared the obtained performances to a single and a multithreaded CPU-based execution. Accelerations up to x100 are achieved for large problem instances

    Multiprocessor task scheduling in multistage hyrid flowshops: a genetic algorithm approach

    Get PDF
    This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The objective is to minimize the make-span, that is, the completion time of all the tasks in the last stage. This problem is of practical interest in the textile and process industries. A genetic algorithm (GA) is developed to solve the problem. The GA is tested against a lower bound from the literature as well as against heuristic rules on a test bed comprising 400 problems with up to 100 jobs, 10 stages, and with up to five processors on each stage. For small problems, solutions found by the GA are compared to optimal solutions, which are obtained by total enumeration. For larger problems, optimum solutions are estimated by a statistical prediction technique. Computational results show that the GA is both effective and efficient for the current problem. Test problems are provided in a web site at www.benchmark.ibu.edu.tr/mpt-h; fsp

    New efficient constructive heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics

    Get PDF
    This paper addresses the hybrid flow shop scheduling problem to minimise makespan, a well-known scheduling problem for which many constructive heuristics have been proposed in the literature. Nevertheless, the state of the art is not clear due to partial or non homogeneous comparisons. In this paper, we review these heuristics and perform a comprehensive computational evaluation to determine which are the most efficient ones. A total of 20 heuristics are implemented and compared in this study. In addition, we propose four new heuristics for the problem. Firstly, two memory-based constructive heuristics are proposed, where a sequence is constructed by inserting jobs one by one in a partial sequence. The most promising insertions tested are kept in a list. However, in contrast to the Tabu search, these insertions are repeated in future iterations instead of forbidding them. Secondly, we propose two constructive heuristics based on Johnson’s algorithm for the permutation flowshop scheduling problem. The computational results carried out on an extensive testbed show that the new proposals outperform the existing heuristics.Ministerio de Ciencia e Innovación DPI2016-80750-

    A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem

    Get PDF
    As the interest of practitioners and researchers in scheduling in a multi-factory environment is growing, there is an increasing need to provide efficient algorithms for this type of decision problems, characterised by simultaneously addressing the assignment of jobs to different factories/workshops and their subsequent scheduling. Here we address the so-called distributed permutation flowshop scheduling problem, in which a set of jobs has to be scheduled over a number of identical factories, each one with its machines arranged as a flowshop. Several heuristics have been designed for this problem, although there is no direct comparison among them. In this paper, we propose a new heuristic which exploits the specific structure of the problem. The computational experience carried out on a well-known testbed shows that the proposed heuristic outperforms existing state-of-the-art heuristics, being able to obtain better upper bounds for more than one quarter of the problems in the testbed.Ministerio de Ciencia e InnovaciĂłn DPI2010-15573/DP
    • …
    corecore