4,488 research outputs found

    Real-Time Context-Aware Microservice Architecture for Predictive Analytics and Smart Decision-Making

    Get PDF
    The impressive evolution of the Internet of Things and the great amount of data flowing through the systems provide us with an inspiring scenario for Big Data analytics and advantageous real-time context-aware predictions and smart decision-making. However, this requires a scalable system for constant streaming processing, also provided with the ability of decision-making and action taking based on the performed predictions. This paper aims at proposing a scalable architecture to provide real-time context-aware actions based on predictive streaming processing of data as an evolution of a previously provided event-driven service-oriented architecture which already permitted the context-aware detection and notification of relevant data. For this purpose, we have defined and implemented a microservice-based architecture which provides real-time context-aware actions based on predictive streaming processing of data. As a result, our architecture has been enhanced twofold: on the one hand, the architecture has been supplied with reliable predictions through the use of predictive analytics and complex event processing techniques, which permit the notification of relevant context-aware information ahead of time. On the other, it has been refactored towards a microservice architecture pattern, highly improving its maintenance and evolution. The architecture performance has been evaluated with an air quality case study

    Optimistic Concurrency Control for Distributed Unsupervised Learning

    Get PDF
    Research on distributed machine learning algorithms has focused primarily on one of two extremes - algorithms that obey strict concurrency constraints or algorithms that obey few or no such constraints. We consider an intermediate alternative in which algorithms optimistically assume that conflicts are unlikely and if conflicts do arise a conflict-resolution protocol is invoked. We view this "optimistic concurrency control" paradigm as particularly appropriate for large-scale machine learning algorithms, particularly in the unsupervised setting. We demonstrate our approach in three problem areas: clustering, feature learning and online facility location. We evaluate our methods via large-scale experiments in a cluster computing environment.Comment: 25 pages, 5 figure

    Large Eddy Simulations of gaseous flames in gas turbine combustion chambers

    Get PDF
    Recent developments in numerical schemes, turbulent combustion models and the regular increase of computing power allow Large Eddy Simulation (LES) to be applied to real industrial burners. In this paper, two types of LES in complex geometry combustors and of specific interest for aeronautical gas turbine burners are reviewed: (1) laboratory-scale combustors, without compressor or turbine, in which advanced measurements are possible and (2) combustion chambers of existing engines operated in realistic operating conditions. Laboratory-scale burners are designed to assess modeling and funda- mental flow aspects in controlled configurations. They are necessary to gauge LES strategies and identify potential limitations. In specific circumstances, they even offer near model-free or DNS-like LES computations. LES in real engines illustrate the potential of the approach in the context of industrial burners but are more difficult to validate due to the limited set of available measurements. Usual approaches for turbulence and combustion sub-grid models including chemistry modeling are first recalled. Limiting cases and range of validity of the models are specifically recalled before a discussion on the numerical breakthrough which have allowed LES to be applied to these complex cases. Specific issues linked to real gas turbine chambers are discussed: multi-perforation, complex acoustic impedances at inlet and outlet, annular chambers.. Examples are provided for mean flow predictions (velocity, temperature and species) as well as unsteady mechanisms (quenching, ignition, combustion instabil- ities). Finally, potential perspectives are proposed to further improve the use of LES for real gas turbine combustor designs

    Parallel classification and optimization of telco trouble ticket dataset

    Get PDF
    In the big data age, extracting applicable information using traditional machine learning methodology is very challenging. This problem emerges from the restricted design of existing traditional machine learning algorithms, which do not entirely support large datasets and distributed processing. The large volume of data nowadays demands an efficient method of building machine-learning classifiers to classify big data. New research is proposed to solve problems by converting traditional machine learning classification into a parallel capable. Apache Spark is recommended as the primary data processing framework for the research activities. The dataset used in this research is related to the telco trouble ticket, identified as one of the large volume datasets. The study aims to solve the data classification problem in a single machine using traditional classifiers such as W-J48. The proposed solution is to enable a conventional classifier to execute the classification method using big data platforms such as Hadoop. This study’s significant contribution is the output matrix evaluation, such as accuracy and computational time taken from both ways resulting from hyper-parameter tuning and improvement of W-J48 classification accuracy for the telco trouble ticket dataset. Additional optimization and estimation techniques have been incorporated into the study, such as grid search and cross-validation method, which significantly improves classification accuracy by 22.62% and reduces the classification time by 21.1% in parallel execution inside the big data environment
    corecore