20,757 research outputs found

    Template Generation - A Graph Profiling Algorithm

    Get PDF
    The availability of high-level design entry tooling is crucial for the viability of any reconfigurable SoC architecture. This paper presents a template generation algorithm. The objective of template generation step is to extract functional equivalent structures, i.e. templates, from a control data flow graph. By profiling the graph, the algorithm generates all the possible templates and the corresponding matches. Using unique serial numbers and circle numbers, the algorithm can find all distinct templates with multiple outputs. A new type of graph (hydragraph) that can cope with multiple outputs is introduced. The generated templates pepresented by the hydragraph are not limited in shapes, i.e., we can find templates with multiple outputs or multiple sinks

    A System for Compressive Sensing Signal Reconstruction

    Full text link
    An architecture for hardware realization of a system for sparse signal reconstruction is presented. The threshold based reconstruction method is considered, which is further modified in this paper to reduce the system complexity in order to provide easier hardware realization. Instead of using the partial random Fourier transform matrix, the minimization problem is reformulated using only the triangular R matrix from the QR decomposition. The triangular R matrix can be efficiently implemented in hardware without calculating the orthogonal Q matrix. A flexible and scalable realization of matrix R is proposed, such that the size of R changes with the number of available samples and sparsity level.Comment: 6 page

    Geometric versions of the 3-dimensional assignment problem under general norms

    Get PDF
    We discuss the computational complexity of special cases of the 3-dimensional (axial) assignment problem where the elements are points in a Cartesian space and where the cost coefficients are the perimeters of the corresponding triangles measured according to a certain norm. (All our results also carry over to the corresponding special cases of the 3-dimensional matching problem.) The minimization version is NP-hard for every norm, even if the underlying Cartesian space is 2-dimensional. The maximization version is polynomially solvable, if the dimension of the Cartesian space is fixed and if the considered norm has a polyhedral unit ball. If the dimension of the Cartesian space is part of the input, the maximization version is NP-hard for every LpL_p norm; in particular the problem is NP-hard for the Manhattan norm L1L_1 and the Maximum norm L∞L_{\infty} which both have polyhedral unit balls.Comment: 21 pages, 9 figure

    Real time flight simulation methodology

    Get PDF
    An example sensitivity study is presented to demonstrate how a digital autopilot designer could make a decision on minimum sampling rate for computer specification. It consists of comparing the simulated step response of an existing analog autopilot and its associated aircraft dynamics to the digital version operating at various sampling frequencies and specifying a sampling frequency that results in an acceptable change in relative stability. In general, the zero order hold introduces phase lag which will increase overshoot and settling time. It should be noted that this solution is for substituting a digital autopilot for a continuous autopilot. A complete redesign could result in results which more closely resemble the continuous results or which conform better to original design goals

    Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI

    Get PDF
    Parallel MRI is a fast imaging technique that enables the acquisition of highly resolved images in space or/and in time. The performance of parallel imaging strongly depends on the reconstruction algorithm, which can proceed either in the original k-space (GRAPPA, SMASH) or in the image domain (SENSE-like methods). To improve the performance of the widely used SENSE algorithm, 2D- or slice-specific regularization in the wavelet domain has been deeply investigated. In this paper, we extend this approach using 3D-wavelet representations in order to handle all slices together and address reconstruction artifacts which propagate across adjacent slices. The gain induced by such extension (3D-Unconstrained Wavelet Regularized -SENSE: 3D-UWR-SENSE) is validated on anatomical image reconstruction where no temporal acquisition is considered. Another important extension accounts for temporal correlations that exist between successive scans in functional MRI (fMRI). In addition to the case of 2D+t acquisition schemes addressed by some other methods like kt-FOCUSS, our approach allows us to deal with 3D+t acquisition schemes which are widely used in neuroimaging. The resulting 3D-UWR-SENSE and 4D-UWR-SENSE reconstruction schemes are fully unsupervised in the sense that all regularization parameters are estimated in the maximum likelihood sense on a reference scan. The gain induced by such extensions is illustrated on both anatomical and functional image reconstruction, and also measured in terms of statistical sensitivity for the 4D-UWR-SENSE approach during a fast event-related fMRI protocol. Our 4D-UWR-SENSE algorithm outperforms the SENSE reconstruction at the subject and group levels (15 subjects) for different contrasts of interest (eg, motor or computation tasks) and using different parallel acceleration factors (R=2 and R=4) on 2x2x3mm3 EPI images.Comment: arXiv admin note: substantial text overlap with arXiv:1103.353
    • 

    corecore