982 research outputs found

    A Parallel Branch and Bound Algorithm for the Maximum Labelled Clique Problem

    Get PDF
    The maximum labelled clique problem is a variant of the maximum clique problem where edges in the graph are given labels, and we are not allowed to use more than a certain number of distinct labels in a solution. We introduce a new branch-and-bound algorithm for the problem, and explain how it may be parallelised. We evaluate an implementation on a set of benchmark instances, and show that it is consistently faster than previously published results, sometimes by four or five orders of magnitude.Comment: Author-final version. Accepted to Optimization Letter

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Algorithmic Meta-Theorems

    Full text link
    Algorithmic meta-theorems are general algorithmic results applying to a whole range of problems, rather than just to a single problem alone. They often have a "logical" and a "structural" component, that is they are results of the form: every computational problem that can be formalised in a given logic L can be solved efficiently on every class C of structures satisfying certain conditions. This paper gives a survey of algorithmic meta-theorems obtained in recent years and the methods used to prove them. As many meta-theorems use results from graph minor theory, we give a brief introduction to the theory developed by Robertson and Seymour for their proof of the graph minor theorem and state the main algorithmic consequences of this theory as far as they are needed in the theory of algorithmic meta-theorems

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    Maximum Common Subgraph Isomorphism Algorithms

    Get PDF
    Maximum common subgraph (MCS) isomorphism algorithms play an important role in chemoinformatics by providing an effective mechanism for the alignment of pairs of chemical structures. This article discusses the various types of MCS that can be identified when two graphs are compared and reviews some of the algorithms that are available for this purpose, focusing on those that are, or may be, applicable to the matching of chemical graphs

    An FPT algorithm and a polynomial kernel for Linear Rankwidth-1 Vertex Deletion

    Get PDF
    Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514--528, 2006]. Motivated from recent development on graph modification problems regarding classes of graphs of bounded treewidth or pathwidth, we study the Linear Rankwidth-1 Vertex Deletion problem (shortly, LRW1-Vertex Deletion). In the LRW1-Vertex Deletion problem, given an nn-vertex graph GG and a positive integer kk, we want to decide whether there is a set of at most kk vertices whose removal turns GG into a graph of linear rankwidth at most 11 and find such a vertex set if one exists. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time f(k)â‹…n3f(k)\cdot n^3 for some function ff, it is not clear whether this problem allows a running time with a modest exponential function. We first establish that LRW1-Vertex Deletion can be solved in time 8kâ‹…nO(1)8^k\cdot n^{\mathcal{O}(1)}. The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define necklace graphs and investigate their structural properties. Later, we reduce the polynomial factor by refining the trivial branching step based on a cliquewidth expression of a graph, and obtain an algorithm that runs in time 2O(k)â‹…n42^{\mathcal{O}(k)}\cdot n^4. We also prove that the running time cannot be improved to 2o(k)â‹…nO(1)2^{o(k)}\cdot n^{\mathcal{O}(1)} under the Exponential Time Hypothesis assumption. Lastly, we show that the LRW1-Vertex Deletion problem admits a polynomial kernel.Comment: 29 pages, 9 figures, An extended abstract appeared in IPEC201
    • …
    corecore