9,757 research outputs found

    Free Level Threshold Zone (FLTZ) Logic For Mixed Analog-Digital Closed Loop Circuitry [TK7887.6. N335 2008 f rb].

    Get PDF
    Para penyelidik sentiasa mencari cara-cara penambahbaikan kaedah antara muka antara domain Analog dan Digital. Researchers have always look for ways to improve the interfacing method between the Analog and Digital domain

    Pipelined Two-Operand Modular Adders

    Get PDF
    Pipelined two-operand modular adder (TOMA) is one of basic components used in digital signal processing (DSP) systems that use the residue number system (RNS). Such modular adders are used in binary/residue and residue/binary converters, residue multipliers and scalers as well as within residue processing channels. The design of pipelined TOMAs is usually obtained by inserting an appriopriate number of latch layers inside a nonpipelined TOMA structure. Hence their area is also determined by the number of latches and the delay by the number of latch layers. In this paper we propose a new pipelined TOMA that is based on a new TOMA, that has the smaller area and smaller delay than other known structures. Comparisons are made using data from the very large scale of integration (VLSI) standard cell library

    What grid cells convey about rat location

    Get PDF
    We characterize the relationship between the simultaneously recorded quantities of rodent grid cell firing and the position of the rat. The formalization reveals various properties of grid cell activity when considered as a neural code for representing and updating estimates of the rat's location. We show that, although the spatially periodic response of grid cells appears wasteful, the code is fully combinatorial in capacity. The resulting range for unambiguous position representation is vastly greater than the ≈1–10 m periods of individual lattices, allowing for unique high-resolution position specification over the behavioral foraging ranges of rats, with excess capacity that could be used for error correction. Next, we show that the merits of the grid cell code for position representation extend well beyond capacity and include arithmetic properties that facilitate position updating. We conclude by considering the numerous implications, for downstream readouts and experimental tests, of the properties of the grid cell code
    corecore