6,605 research outputs found

    REBA: A Refinement-Based Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture for robots that combines the complementary strengths of probabilistic graphical models and declarative programming to represent and reason with logic-based and probabilistic descriptions of uncertainty and domain knowledge. An action language is extended to support non-boolean fluents and non-deterministic causal laws. This action language is used to describe tightly-coupled transition diagrams at two levels of granularity, with a fine-resolution transition diagram defined as a refinement of a coarse-resolution transition diagram of the domain. The coarse-resolution system description, and a history that includes (prioritized) defaults, are translated into an Answer Set Prolog (ASP) program. For any given goal, inference in the ASP program provides a plan of abstract actions. To implement each such abstract action, the robot automatically zooms to the part of the fine-resolution transition diagram relevant to this action. A probabilistic representation of the uncertainty in sensing and actuation is then included in this zoomed fine-resolution system description, and used to construct a partially observable Markov decision process (POMDP). The policy obtained by solving the POMDP is invoked repeatedly to implement the abstract action as a sequence of concrete actions, with the corresponding observations being recorded in the coarse-resolution history and used for subsequent reasoning. The architecture is evaluated in simulation and on a mobile robot moving objects in an indoor domain, to show that it supports reasoning with violation of defaults, noisy observations and unreliable actions, in complex domains.Comment: 72 pages, 14 figure

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    A probabilistic model for information and sensor validation

    Get PDF
    This paper develops a new theory and model for information and sensor validation. The model represents relationships between variables using Bayesian networks and utilizes probabilistic propagation to estimate the expected values of variables. If the estimated value of a variable differs from the actual value, an apparent fault is detected. The fault is only apparent since it may be that the estimated value is itself based on faulty data. The theory extends our understanding of when it is possible to isolate real faults from potential faults and supports the development of an algorithm that is capable of isolating real faults without deferring the problem to the use of expert provided domain-specific rules. To enable practical adoption for real-time processes, an any time version of the algorithm is developed, that, unlike most other algorithms, is capable of returning improving assessments of the validity of the sensors as it accumulates more evidence with time. The developed model is tested by applying it to the validation of temperature sensors during the start-up phase of a gas turbine when conditions are not stable; a problem that is known to be challenging. The paper concludes with a discussion of the practical applicability and scalability of the model

    Biomedical applications of belief networks

    Get PDF
    Biomedicine is an area in which computers have long been expected to play a significant role. Although many of the early claims have proved unrealistic, computers are gradually becoming accepted in the biomedical, clinical and research environment. Within these application areas, expert systems appear to have met with the most resistance, especially when applied to image interpretation.In order to improve the acceptance of computerised decision support systems it is necessary to provide the information needed to make rational judgements concerning the inferences the system has made. This entails an explanation of what inferences were made, how the inferences were made and how the results of the inference are to be interpreted. Furthermore there must be a consistent approach to the combining of information from low level computational processes through to high level expert analyses.nformation from low level computational processes through to high level expert analyses. Until recently ad hoc formalisms were seen as the only tractable approach to reasoning under uncertainty. A review of some of these formalisms suggests that they are less than ideal for the purposes of decision making. Belief networks provide a tractable way of utilising probability theory as an inference formalism by combining the theoretical consistency of probability for inference and decision making, with the ability to use the knowledge of domain experts.nowledge of domain experts. The potential of belief networks in biomedical applications has already been recogÂŹ nised and there has been substantial research into the use of belief networks for medical diagnosis and methods for handling large, interconnected networks. In this thesis the use of belief networks is extended to include detailed image model matching to show how, in principle, feature measurement can be undertaken in a fully probabilistic way. The belief networks employed are usually cyclic and have strong influences between adjacent nodes, so new techniques for probabilistic updating based on a model of the matching process have been developed.An object-orientated inference shell called FLAPNet has been implemented and used to apply the belief network formalism to two application domains. The first application is model-based matching in fetal ultrasound images. The imaging modality and biological variation in the subject make model matching a highly uncertain process. A dynamic, deformable model, similar to active contour models, is used. A belief network combines constraints derived from local evidence in the image, with global constraints derived from trained models, to control the iterative refinement of an initial model cue.In the second application a belief network is used for the incremental aggregation of evidence occurring during the classification of objects on a cervical smear slide as part of an automated pre-screening system. A belief network provides both an explicit domain model and a mechanism for the incremental aggregation of evidence, two attributes important in pre-screening systems.Overall it is argued that belief networks combine the necessary quantitative features required of a decision support system with desirable qualitative features that will lead to improved acceptability of expert systems in the biomedical domain

    A MULTI-FUNCTIONAL PROVENANCE ARCHITECTURE: CHALLENGES AND SOLUTIONS

    Get PDF
    In service-oriented environments, services are put together in the form of a workflow with the aim of distributed problem solving. Capturing the execution details of the services' transformations is a significant advantage of using workflows. These execution details, referred to as provenance information, are usually traced automatically and stored in provenance stores. Provenance data contains the data recorded by a workflow engine during a workflow execution. It identifies what data is passed between services, which services are involved, and how results are eventually generated for particular sets of input values. Provenance information is of great importance and has found its way through areas in computer science such as: Bioinformatics, database, social, sensor networks, etc. Current exploitation and application of provenance data is very limited as provenance systems started being developed for specific applications. Thus, applying learning and knowledge discovery methods to provenance data can provide rich and useful information on workflows and services. Therefore, in this work, the challenges with workflows and services are studied to discover the possibilities and benefits of providing solutions by using provenance data. A multifunctional architecture is presented which addresses the workflow and service issues by exploiting provenance data. These challenges include workflow composition, abstract workflow selection, refinement, evaluation, and graph model extraction. The specific contribution of the proposed architecture is its novelty in providing a basis for taking advantage of the previous execution details of services and workflows along with artificial intelligence and knowledge management techniques to resolve the major challenges regarding workflows. The presented architecture is application-independent and could be deployed in any area. The requirements for such an architecture along with its building components are discussed. Furthermore, the responsibility of the components, related works and the implementation details of the architecture along with each component are presented

    Generalized Permutohedra from Probabilistic Graphical Models

    Get PDF
    A graphical model encodes conditional independence relations via the Markov properties. For an undirected graph these conditional independence relations can be represented by a simple polytope known as the graph associahedron, which can be constructed as a Minkowski sum of standard simplices. There is an analogous polytope for conditional independence relations coming from a regular Gaussian model, and it can be defined using multiinformation or relative entropy. For directed acyclic graphical models and also for mixed graphical models containing undirected, directed and bidirected edges, we give a construction of this polytope, up to equivalence of normal fans, as a Minkowski sum of matroid polytopes. Finally, we apply this geometric insight to construct a new ordering-based search algorithm for causal inference via directed acyclic graphical models.Comment: Appendix B is expanded. Final version to appear in SIAM J. Discrete Mat
    • …
    corecore