441 research outputs found

    Augmented reality device for first response scenarios

    Get PDF
    A prototype of a wearable computer system is proposed and implemented using commercial off-shelf components. The system is designed to allow the user to access location-specific information about an environment, and to provide capability for user tracking. Areas of applicability include primarily first response scenarios, with possible applications in maintenance or construction of buildings and other structures. Necessary preparation of the target environment prior to system\u27s deployment is limited to noninvasive labeling using optical fiducial markers. The system relies on computational vision methods for registration of labels and user position. With the system the user has access to on-demand information relevant to a particular real-world location. Team collaboration is assisted by user tracking and real-time visualizations of team member positions within the environment. The user interface and display methods are inspired by Augmented Reality1 (AR) techniques, incorporating a video-see-through Head Mounted Display (HMD) and fingerbending sensor glove.*. 1Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. At present, most AR research is concerned with the use of live video imagery which is digitally processed and augmented by the addition of computer generated graphics. Advanced research includes the use of motion tracking data, fiducial marker recognition using machine vision, and the construction of controlled environments containing any number of sensors and actuators. (Source: Wikipedia) *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat; Microsoft Office; Windows MediaPlayer or RealPlayer

    PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON APPLICATIONS OF AUGMENTED REALITY ENVIRONMENTS 1 Augmented Reality for Construction Site Monitoring and Documentation

    Get PDF
    Abstract—Augmented Reality allows for an on-site presentation of information that is registered to the physical environment. Applications from civil engineering, which require users to process complex information, are among those which can benefit particularly highly from such a presentation. In this paper, we will describe how to use Augmented Reality (AR) to support monitoring and documentation of construction site progress. For these tasks, the staff responsible usually requires fast and comprehensible access to progress information to enable comparison to the as-built status as well as to as-planned data. Instead of tediously searching and mapping related information to the actual construction site environment, our AR system allows for the access of information right where it is needed. This is achieved by superimposing progress as well as as-planned information onto the user’s view of the physical environment. For this purpose, we present an approach that uses aerial 3D reconstruction to automatically capture progress information and a mobile AR client for on-site visualization. Within this paper, we will describe in greater detail how to capture 3D, how to register the AR system within the physical outdoor environment, how to visualize progress information in a comprehensible way in an AR overlay and how to interact with this kind of information. By implementing such an AR system, we are able to provide an overview about the possibilities and future applications of AR in the construction industry

    Implementation of Unmanned aerial vehicles (UAVs) for assessment of transportation infrastructure - Phase II

    Get PDF
    Technological advances in unmanned aerial vehicle (UAV) technologies continue to enable these tools to become easier to use, more economical, and applicable for transportation-related operations, maintenance, and asset management while also increasing safety and decreasing cost. This Phase 2 project continued to test and evaluate five main UAV platforms with a combination of optical, thermal, and lidar sensors to determine how to implement them into MDOT workflows. Field demonstrations were completed at bridges, a construction site, road corridors, and along highways with data being processed and analyzed using customized algorithms and tools. Additionally, a cost-benefit analysis was conducted, comparing manual and UAV-based inspection methods. The project team also gave a series of technical demonstrations and conference presentations, enabling outreach to interested audiences who gained understanding of the potential implementation of this technology and the advanced research that MDOT is moving to implementation. The outreach efforts and research activities performed under this contract demonstrated how implementing UAV technologies into MDOT workflows can provide many benefits to MDOT and the motoring public; such as advantages in improved cost-effectiveness, operational management, and timely maintenance of Michigan’s transportation infrastructure

    The social AR continuum : wearable AR for sharing social experiences.

    Get PDF
    The primary goal of the work reported in this thesis is to explore, develop and evaluate novel interaction techniques for Augmented Reality (AR) wearable head- sets, by focusing on how they can be used to share social experiences with family and friends. AR has the potential to provide an intuitive and natural approach to sharing our social experiences in life with others while being co-present. In order to better visualise and interact with social networks on wearable AR devices, we intro- duce the concept of the "Social AR Continuum", which describes the space of sharing experiences in AR across various axes. We discuss the advantages and limitations of various implementations and techniques of shared social experiences on wearable AR. Based on Human-Computer Interaction methodologies, we conducted user studies to evaluate user presences and system usability of our implementations for visualising, sharing and interacting with social experiences on AR headsets. The work focused on the essential Social AR Continuum dimensions of representing contacts, sharing data and interactions, developed user interfaces on these dimensions and evaluated them using user studies. Our results show that using AR to share social experiences can increase users’ social presence. The results are summarised as design recommendations to help interface designers better design shared social experiences on wearable AR systems

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Scene creation and exploration in outdoor augmented reality

    Get PDF
    This thesis investigates Outdoor Augmented Reality (AR) especially for scene creation and exploration aspects.We decompose a scene into several components: a) Device, b) Target Object(s), c) Task, and discuss their interrelations. Based on those relations we outline use-cases and workflows. The main contribution of this thesis is providing AR oriented workflows for selected professional fields specifically for scene creation and exploration purposes, through case studies as well as analyzing the relations between AR scene components. Our contributions inlude, but not limited to: i) analysis of scene components and factoring inherintly available errors, to create a transitional hybrid tracking scheme for multiple targets, ii) a novel image-based approach that uses building block analogy for modelling and introduces volumetric and temporal labeling for annotations, iii) an evaluation of the state of the art X-Ray visualization methods as well as our proposed multi-view method. AR technology and capabilities tend to change rapidly, however we believe the relation between scene components and the practical advantages their analysis provide are valuable. Moreover, we have chosen case studies as diverse as possible in order to cover a wide range of professional field studies. We believe our research is extendible to a variety of field studies for disciplines including but not limited to: Archaeology, architecture, cultural heritage, tourism, stratigraphy, civil engineering, and urban maintenance
    • 

    corecore