3,195 research outputs found

    A panorama of artificial and computational intelligence in games

    Get PDF
    This paper attempts to give a high-level overview of the field of artificial and computational intelligence (AI/CI) in games, with particular reference to how the different core research areas within this field inform and interact with each other, both actually and potentially. We identify ten main research areas within this field: NPC behavior learning, search and planning, player modeling, games as AI benchmarks, procedural content generation, computational narrative, believable agents, AI-assisted game design, general game artificial intelligence and AI in commercial games. We view and analyze the areas from three key perspectives: (1) the dominant AI method(s) used under each area; (2) the relation of each area with respect to the end (human) user; and (3) the placement of each area within a human-computer (player-game) interaction perspective. In addition, for each of these areas we consider how it could inform or interact with each of the other areas; in those cases where we find that meaningful interaction either exists or is possible, we describe the character of that interaction and provide references to published studies, if any. We believe that this paper improves understanding of the current nature of the game AI/CI research field and the interdependences between its core areas by providing a unifying overview. We also believe that the discussion of potential interactions between research areas provides a pointer to many interesting future research projects and unexplored subfields.peer-reviewe

    A Panorama of Artificial and Computational Intelligence in Games

    Full text link

    'Ephemerality’ in game development: opportunitiees and challenges

    Get PDF
    Ephemeral Computation (Eph-C) is a newly created computation paradigm, the purpose of which is to take advantage of the ephemeral nature (limited lifetime) of computational resources. First we speak of this new paradigm in general terms, then more specifically in terms of videogame development. We present possible applications and benefits for the main research fields associated with videogame development. This is a preliminary work which aims to investigate the possibilities of applying ephemeral computation to the products of the videogame industry. Therefore, as a preliminary work, it attempts to serve as the inspiration for other researchers or videogame developers.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    AI Researchers, Video Games Are Your Friends!

    Full text link
    If you are an artificial intelligence researcher, you should look to video games as ideal testbeds for the work you do. If you are a video game developer, you should look to AI for the technology that makes completely new types of games possible. This chapter lays out the case for both of these propositions. It asks the question "what can video games do for AI", and discusses how in particular general video game playing is the ideal testbed for artificial general intelligence research. It then asks the question "what can AI do for video games", and lays out a vision for what video games might look like if we had significantly more advanced AI at our disposal. The chapter is based on my keynote at IJCCI 2015, and is written in an attempt to be accessible to a broad audience.Comment: in Studies in Computational Intelligence Studies in Computational Intelligence, Volume 669 2017. Springe

    A spatially-structured PCG method for content diversity in a Physics-based simulation game

    Get PDF
    This paper presents a spatially-structured evolutionary algorithm (EA) to procedurally generate game maps of di ferent levels of di ficulty to be solved, in Gravityvolve!, a physics-based simulation videogame that we have implemented and which is inspired by the n- body problem, a classical problem in the fi eld of physics and mathematics. The proposal consists of a steady-state EA whose population is partitioned into three groups according to the di ficulty of the generated content (hard, medium or easy) which can be easily adapted to handle the automatic creation of content of diverse nature in other games. In addition, we present three fitness functions, based on multiple criteria (i.e:, intersections, gravitational acceleration and simulations), that were used experimentally to conduct the search process for creating a database of maps with di ferent di ficulty in Gravityvolve!.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards

    General general game AI

    Get PDF
    Arguably the grand goal of artificial intelligence research is to produce machines with general intelligence: the capacity to solve multiple problems, not just one. Artificial intelligence (AI) has investigated the general intelligence capacity of machines within the domain of games more than any other domain given the ideal properties of games for that purpose: controlled yet interesting and computationally hard problems. This line of research, however, has so far focused solely on one specific way of which intelligence can be applied to games: playing them. In this paper, we build on the general game-playing paradigm and expand it to cater for all core AI tasks within a game design process. That includes general player experience and behavior modeling, general non-player character behavior, general AI-assisted tools, general level generation and complete game generation. The new scope for general general game AI beyond game-playing broadens the applicability and capacity of AI algorithms and our understanding of intelligence as tested in a creative domain that interweaves problem solving, art, and engineering.peer-reviewe
    • …
    corecore