8 research outputs found

    Microaggregation sorting framework for k-anonymity statistical disclosure control in cloud computing

    Get PDF
    In cloud computing, there have led to an increase in the capability to store and record personal data (microdata) in the cloud. In most cases, data providers have no/little control that has led to concern that the personal data may be beached. Microaggregation techniques seek to protect microdata in such a way that data can be published and mined without providing any private information that can be linked to specific individuals. An optimal microaggregation method must minimize the information loss resulting from this replacement process. The challenge is how to minimize the information loss during the microaggregation process. This paper presents a sorting framework for Statistical Disclosure Control (SDC) to protect microdata in cloud computing. It consists of two stages. In the first stage, an algorithm sorts all records in a data set in a particular way to ensure that during microaggregation very dissimilar observations are never entered into the same cluster. In the second stage a microaggregation method is used to create k-anonymous clusters while minimizing the information loss. The performance of the proposed techniques is compared against the most recent microaggregation methods. Experimental results using benchmark datasets show that the proposed algorithms perform significantly better than existing associate techniques in the literature

    Novel iterative min-max clustering to minimize information loss in statistical disclosure control

    Get PDF
    In recent years, there has been an alarming increase of online identity theft and attacks using personally identifiable information. The goal of privacy preservation is to de-associate individuals from sensitive or microdata information. Microaggregation techniques seeks to protect microdata in such a way that can be published and mined without providing any private information that can be linked to specific individuals. Microaggregation works by partitioning the microdata into groups of at least k records and then replacing the records in each group with the centroid of the group. An optimal microaggregation method must minimize the information loss resulting from this replacement process. The challenge is how to minimize the information loss during the microaggregation process. This paper presents a new microaggregation technique for Statistical Disclosure Control (SDC). It consists of two stages. In the first stage, the algorithm sorts all the records in the data set in a particular way to ensure that during microaggregation very dissimilar observations are never entered into the same cluster. In the second stage an optimal microaggregation method is used to create k-anonymous clusters while minimizing the information loss. It works by taking the sorted data and simultaneously creating two distant clusters using the two extreme sorted values as seeds for the clusters. The performance of the proposed technique is compared against the most recent microaggregation methods. Experimental results using benchmark datasets show that the proposed algorithm has the lowest information loss compared with a basket of techniques in the literature

    RANDOMIZATION BASED PRIVACY PRESERVING CATEGORICAL DATA ANALYSIS

    Get PDF
    The success of data mining relies on the availability of high quality data. To ensure quality data mining, effective information sharing between organizations becomes a vital requirement in today’s society. Since data mining often involves sensitive infor- mation of individuals, the public has expressed a deep concern about their privacy. Privacy-preserving data mining is a study of eliminating privacy threats while, at the same time, preserving useful information in the released data for data mining. This dissertation investigates data utility and privacy of randomization-based mod- els in privacy preserving data mining for categorical data. For the analysis of data utility in randomization model, we first investigate the accuracy analysis for associ- ation rule mining in market basket data. Then we propose a general framework to conduct theoretical analysis on how the randomization process affects the accuracy of various measures adopted in categorical data analysis. We also examine data utility when randomization mechanisms are not provided to data miners to achieve better privacy. We investigate how various objective associ- ation measures between two variables may be affected by randomization. We then extend it to multiple variables by examining the feasibility of hierarchical loglinear modeling. Our results provide a reference to data miners about what they can do and what they can not do with certainty upon randomized data directly without the knowledge about the original distribution of data and distortion information. Data privacy and data utility are commonly considered as a pair of conflicting re- quirements in privacy preserving data mining applications. In this dissertation, we investigate privacy issues in randomization models. In particular, we focus on the attribute disclosure under linking attack in data publishing. We propose efficient so- lutions to determine optimal distortion parameters such that we can maximize utility preservation while still satisfying privacy requirements. We compare our randomiza- tion approach with l-diversity and anatomy in terms of utility preservation (under the same privacy requirements) from three aspects (reconstructed distributions, accuracy of answering queries, and preservation of correlations). Our empirical results show that randomization incurs significantly smaller utility loss

    Quantifying the Costs and Benefits of Privacy-Preserving Health Data Publishing

    Get PDF
    Cost-benefit analysis is required for making good business decision. This analysis is crucial in the field of privacy-preserving data publishing. In the economic trade of data privacy and utility, organization has the obligation to respect privacy of individuals. They intend to maximize the utility in order to earn revenue and also aim to achieve the acceptable level of privacy. In this thesis, we study the privacy and utility trade-offs and propose an analytical cost model which can help organization in better decision making subject to sharing customer data with another party. We examine the relevant cost factors associated with earning the revenue and the potential damage cost. Our proposed model is suitable for health information custodians (HICs) who share raw patient electronic health records (EHRs) with another health center or health insurer for research and commercial purposes. Health data in its raw form contain significant volume of sensitive data and sharing this data raises issues of privacy breach. Our analytical cost model could be utilized for nonperturbative and perturbative anonymization techniques for relational data. We show that our approach can achieve optimal value as per selection of each privacy model, namely, K-anonymity, LKC-privacy, and ϵ-differential privacy and their anonymization algorithm and level, through extensive experiments on a real-life dataset
    corecore