2,345 research outputs found

    A Pairwise Naïve Bayes Approach to Bayesian Classification

    Get PDF
    Despite the relatively high accuracy of the naïve Bayes (NB) classifier, there may be several instances where it is not optimal, i.e. does not have the same classification performance as the Bayes classifier utilizing the joint distribution of the examined attributes. However, the Bayes classifier can be computationally intractable due to its required knowledge of the joint distribution. Therefore, we introduce a “pairwise naïve” Bayes (PNB) classifier that incorporates all pairwise relationships among the examined attributes, but does not require specification of the joint distribution. In this paper, we first describe the necessary and sufficient conditions under which the PNB classifier is optimal. We then discuss sufficient conditions for which the PNB classifier, and not NB, is optimal for normal attributes. Through simulation and actual studies, we evaluate the performance of our proposed classifier relative to the Bayes and NB classifiers, along with the HNB, AODE, LBR and TAN classifiers, using normal density and empirical estimation methods. Our applications show that the PNB classifier using normal density estimation yields the highest accuracy for data sets containing continuous attributes. We conclude that it offers a useful compromise between the Bayes and NB classifiers

    Feature Reduction Using Ensemble Approach

    Get PDF

    Refining gene signatures: a Bayesian approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In high density arrays, the identification of relevant genes for disease classification is complicated by not only the curse of dimensionality but also the highly correlated nature of the array data. In this paper, we are interested in the question of how many and which genes should be selected for a disease class prediction. Our work consists of a Bayesian supervised statistical learning approach to refine gene signatures with a regularization which penalizes for the correlation between the variables selected.</p> <p>Results</p> <p>Our simulation results show that we can most often recover the correct subset of genes that predict the class as compared to other methods, even when accuracy and subset size remain the same. On real microarray datasets, we show that our approach can refine gene signatures to obtain either the same or better predictive performance than other existing methods with a smaller number of genes.</p> <p>Conclusions</p> <p>Our novel Bayesian approach includes a prior which penalizes highly correlated features in model selection and is able to extract key genes in the highly correlated context of microarray data. The methodology in the paper is described in the context of microarray data, but can be applied to any array data (such as micro RNA, for example) as a first step towards predictive modeling of cancer pathways. A user-friendly software implementation of the method is available.</p

    Modeling Content Lifespan in Online Social Networks Using Data Mining

    Get PDF
    Online Social Networks (OSNs) are integrated into business, entertainment, politics, and education; they are integrated into nearly every facet of our everyday lives. They have played essential roles in milestones for humanity, such as the social revolutions in certain countries, to more day-to-day activities, such as streaming entertaining or educational materials. Not surprisingly, social networks are the subject of study, not only for computer scientists, but also for economists, sociologists, political scientists, and psychologists, among others. In this dissertation, we build a model that is used to classify content on the OSNs of Reddit, 4chan, Flickr, and YouTube according the types of lifespan their content have and the popularity tiers that the content reaches. The proposed model is evaluated using 10-fold cross-validation, using data mining techniques of Sequential Minimal Optimization (SMO), which is a support vector machine algorithm, Decision Table, Naïve Bayes, and Random Forest. The run times and accuracies are compared across OSNs, models, and data mining algorithms. The peak/death category of Reddit content can be classified with 64% accuracy. The peak/death category of 4Chan content can be classified with 76% accuracy. The peak/death category of Flickr content can classified with 65% accuracy. We also used 10-fold cross-validation to measure the accuracy in which the popularity tier of content can be classified. The popularity tier of content on Reddit can be classified with 84% accuracy. The popularity tier of content on 4chan can be classified with 70% accuracy. The popularity tier of content on Flickr can be classified with 66% accuracy. The popularity tier of content on YouTube can be classified with only 48% accuracy. Our experiments compared the runtimes and accuracy of SMO, Naïve Bayes, Decision Table, and Random Forest to classify the lifespan of content on Reddit, 4chan, and Flickr as well as classify the popularity tier of content on Reddit, 4chan, Flickr, and YouTube. The experimental results indicate that SMO is capable of outperforming the other algorithms in runtime across all OSNs. Decision Table has the longest observed runtimes, failing to complete analysis before system crashes in some cases. The statistical analysis indicates, with 95% confidence, there is no statistically significant difference in accuracy between the algorithms across all OSNs. Reddit content was shown, with 95% confidence, to be the OSN least likely to be misclassified. All other OSNs, were shown to have no statistically significant difference in terms of their content being more or less likely to be misclassified when compared pairwise with each other

    Bayesian Transductive Markov Random Fields for Interactive Segmentation in Retinal Disorders

    Get PDF
    In the realm of computer aided diagnosis (CAD) interactive segmentation schemes have been well received by physicians, where the combination of human and machine intelligence can provide improved segmentation efficacy with minimal expert intervention [1-3]. Transductive learning (TL) or semi-supervised learning (SSL) is a suitable framework for learning-based interactive segmentation given the scarce label problem. In this paper we present extended work on Bayesian transduction and regularized conditional mixtures for interactive segmentation [3]. We present a Markov random field model integrating a semi-parametric conditional mixture model within a Bayesian transductive learning and inference setting. The model allows efficient learning and inference in a semi-supervised setting given only minimal approximate label information. Preliminary experimental results on multimodal images of retinal disorders such as drusen, geographic atrophy (GA), and choroidal neovascularisation (CNV) with exudates and subretinal fibrosis show promising segmentation performance
    corecore