209 research outputs found

    Adaptive Big Data Pipeline

    Get PDF
    Over the past three decades, data has exponentially evolved from being a simple software by-product to one of the most important companies’ assets used to understand their customers and foresee trends. Deep learning has demonstrated that big volumes of clean data generally provide more flexibility and accuracy when modeling a phenomenon. However, handling ever-increasing data volumes entail new challenges: the lack of expertise to select the appropriate big data tools for the processing pipelines, as well as the speed at which engineers can take such pipelines into production reliably, leveraging the cloud. We introduce a system called Adaptive Big Data Pipelines: a platform to automate data pipelines creation. It provides an interface to capture the data sources, transformations, destinations and execution schedule. The system builds up the cloud infrastructure, schedules and fine-tunes the transformations, and creates the data lineage graph. This system has been tested on data sets of 50 gigabytes, processing them in just a few minutes without user intervention.ITESO, A. C

    INSPIRE datahub: a pan-African integrated suite of services for harmonising longitudinal population health data using OHDSI tools

    Get PDF
    Introduction Population health data integration remains a critical challenge in low- and middle-income countries (LMIC), hindering the generation of actionable insights to inform policy and decision-making. This paper proposes a pan-African, Findable, Accessible, Interoperable, and Reusable (FAIR) research architecture and infrastructure named the INSPIRE datahub. This cloud-based Platform-as-a-Service (PaaS) and on-premises setup aims to enhance the discovery, integration, and analysis of clinical, population-based surveys, and other health data sources. Methods The INSPIRE datahub, part of the Implementation Network for Sharing Population Information from Research Entities (INSPIRE), employs the Observational Health Data Sciences and Informatics (OHDSI) open-source stack of tools and the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) to harmonise data from African longitudinal population studies. Operating on Microsoft Azure and Amazon Web Services cloud platforms, and on on-premises servers, the architecture offers adaptability and scalability for other cloud providers and technology infrastructure. The OHDSI-based tools enable a comprehensive suite of services for data pipeline development, profiling, mapping, extraction, transformation, loading, documentation, anonymization, and analysis. Results The INSPIRE datahub's “On-ramp” services facilitate the integration of data and metadata from diverse sources into the OMOP CDM. The datahub supports the implementation of OMOP CDM across data producers, harmonizing source data semantically with standard vocabularies and structurally conforming to OMOP table structures. Leveraging OHDSI tools, the datahub performs quality assessment and analysis of the transformed data. It ensures FAIR data by establishing metadata flows, capturing provenance throughout the ETL processes, and providing accessible metadata for potential users. The ETL provenance is documented in a machine- and human-readable Implementation Guide (IG), enhancing transparency and usability. Conclusion The pan-African INSPIRE datahub presents a scalable and systematic solution for integrating health data in LMICs. By adhering to FAIR principles and leveraging established standards like OMOP CDM, this architecture addresses the current gap in generating evidence to support policy and decision-making for improving the well-being of LMIC populations. The federated research network provisions allow data producers to maintain control over their data, fostering collaboration while respecting data privacy and security concerns. A use-case demonstrated the pipeline using OHDSI and other open-source tools

    LEAN DATA ENGINEERING. COMBINING STATE OF THE ART PRINCIPLES TO PROCESS DATA EFFICIENTLYS

    Get PDF
    The present work was developed during an internship, under Erasmus+ Traineeship program, in Fieldwork Robotics, a Cambridge based company that develops robots to operate in agricultural fields. They collect data from commercial greenhouses with sensors and real sense cameras, as well as with gripper cameras placed in the robotic arms. This data is recorded mainly in bag files, consisting of unstructured data, such as images and semi-structured data, such as metadata associated with both the conditions where the images were taken and information about the robot itself. Data was uploaded, extracted, cleaned and labelled manually before being used to train Artificial Intelligence (AI) algorithms to identify raspberries during the harvesting process. The amount of available data quickly escalates with every trip to the fields, which creates an ever-growing need for an automated process. This problem was addressed via the creation of a data engineering platform encom- passing a data lake, data warehouse and its needed processing capabilities. This platform was created following a series of principles entitled Lean Data Engineering Principles (LDEP), and the systems that follows them are called Lean Data Engineering Systems (LDES). These principles urge to start with the end in mind: process incoming batch or real-time data with no resource wasting, limiting the costs to the absolutely necessary for the job completion, in other words to be as lean as possible. The LDEP principles are a combination of state-of-the-art ideas stemming from several fields, such as data engineering, software engineering and DevOps, leveraging cloud technologies at its core. The proposed custom-made solution enabled the company to scale its data operations, being able to label images almost ten times faster while reducing over 99.9% of its associated costs in comparison to the previous process. In addition, the data lifecycle time has been reduced from weeks to hours while maintaining coherent data quality results, being able, for instance, to correctly identify 94% of the labels in comparison to a human counterpart.Este trabalho foi desenvolvido durante um estágio no âmbito do programa Erasmus+ Traineeship, na Fieldwork Robotics, uma empresa sediada em Cambridge que desenvolve robôs agrícolas. Estes robôs recolhem dados no terreno com sensores e câmeras real- sense, localizados na estrutura de alumínio e nos pulsos dos braços robóticos. Os dados recolhidos são ficheiros contendo dados não estruturados, tais como imagens, e dados semi- -estruturados, associados às condições em que as imagens foram recolhidas. Originalmente, o processo de tratamento dos dados recolhidos (upload, extração, limpeza e etiquetagem) era feito de forma manual, sendo depois utilizados para treinar algoritmos de Inteligência Artificial (IA) para identificar framboesas durante o processo de colheita. Como a quantidade de dados aumentava substancialmente com cada ida ao terreno, verificou-se uma necessidade crescente de um processo automatizado. Este problema foi endereçado com a criação de uma plataforma de engenharia de dados, composta por um data lake, uma data warehouse e o respetivo processamento, para movimentar os dados nas diferentes etapas do processo. Esta plataforma foi criada seguindo uma série de princípios intitulados Lean Data Engineering Principles (LDEP), sendo os sistemas que os seguem intitulados de Lean Data Engineering Systems (LDES). Estes princípios incitam a começar com o fim em mente: processar dados em batch ou em tempo real, sem desperdício de recursos, limitando os custos ao absolutamente necessário para a concluir o trabalho, ou seja, tornando-os o mais lean possível. Os LDEP combinam vertentes do estado da arte em diversas áreas, tais como engenharia de dados, engenharia de software, DevOps, tendo no seu cerne as tecnologias na cloud. O novo processo permitiu à empresa escalar as suas operações de dados, tornando-se capaz de etiquetar imagens quase 10× mais rápido e reduzindo em mais de 99,9% os custos associados, quando comparado com o processo anterior. Adicionalmente, o ciclo de vida dos dados foi reduzido de semanas para horas, mantendo uma qualidade equiparável, ao ser capaz de identificar corretamente 94% das etiquetas em comparação com um homólogo humano

    Better business by integrating heterogeneous data from the entire value-chain

    Get PDF

    Big Data Now, 2015 Edition

    Get PDF
    Now in its fifth year, O’Reilly’s annual Big Data Now report recaps the trends, tools, applications, and forecasts we’ve talked about over the past year. For 2015, we’ve included a collection of blog posts, authored by leading thinkers and experts in the field, that reflect a unique set of themes we’ve identified as gaining significant attention and traction. Our list of 2015 topics include: Data-driven cultures Data science Data pipelines Big data architecture and infrastructure The Internet of Things and real time Applications of big data Security, ethics, and governance Is your organization on the right track? Get a hold of this free report now and stay in tune with the latest significant developments in big data

    Data Profiling in Cloud Migration: Data Quality Measures while Migrating Data from a Data Warehouse to the Google Cloud Platform

    Get PDF
    Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsIn today times, corporations have gained a vast interest in data. More and more, companies realized that the key to improving their efficiency and effectiveness and understanding their customers’ needs and preferences better was reachable by mining data. However, as the amount of data grow, so must the companies necessities for storage capacity and ensuring data quality for more accurate insights. As such, new data storage methods must be considered, evolving from old ones, still keeping data integrity. Migrating a company’s data from an old method like a Data Warehouse to a new one, Google Cloud Platform is an elaborate task. Even more so when data quality needs to be assured and sensible data, like Personal Identifiable Information, needs to be anonymized in a Cloud computing environment. To ensure these points, profiling data, before or after it migrated, has a significant value by design a profile for the data available in each data source (e.g., Databases, files, and others) based on statistics, metadata information, and pattern rules. Thus, ensuring data quality is within reasonable standards through statistics metrics, and all Personal Identifiable Information is identified and anonymized accordingly. This work will reflect the required process of how profiling Data Warehouse data can improve data quality to better migrate to the Cloud

    Cloud-based integration and standardization of address data for disaster management – a South African case study

    Get PDF
    Addresses are essential for disaster risk management and response because they are used to locate people affected by a disaster or at risk of being affected. South Africa is vulnerable to disasters, however, despite a legislative framework for supporting disaster risk management that meets international standards, implementation falls short due to underfunding, poor interdepartmental coordination and lack of political support. The importance of cross jurisdictional address data was highlighted by the COVID-19 pandemic of 2020 when the geocoding of positive cases was hindered due to the lack of such address data in South Africa. In this paper, we present first results about a cloud-based tool for integrating address data from multiple municipalities into a single address dataset that conforms to the South African National Standard, SANS 1883-2:2017, Geographic information – Addresses: Part 2: Address data exchange. We reviewed and evaluated three cloud platforms for the prototype implementation. The integrated dataset is maintained in the cloud and therefore readily accessible by relevant organizations. At the same time, processing in the cloud can handle changing volumes of data with elasticity, i.e. computing power can be increased or decreased at short notice, as necessary during a disaster response. Furthermore, processing can be automated, thereby mitigating the risk of reduced manpower due to a disaster. Overall, a properly maintained cloudbased tool can result in more efficient use of resources presenting a viable and interesting alternative for underfunded disaster risk management centres in South Africa and other parts of the world.https://www.isprs.org/publications/archives.aspxpm2021Geography, Geoinformatics and Meteorolog

    A review and future direction of agile, business intelligence, analytics and data science

    No full text
    Agile methodologies were introduced in 2001. Since this time, practitioners have applied Agile methodologies to many delivery disciplines. This article explores the application of Agile methodologies and principles to business intelligence delivery and how Agile has changed with the evolution of business intelligence. Business intelligence has evolved because the amount of data generated through the internet and smart devices has grown exponentially altering how organizations and individuals use information. The practice of business intelligence delivery with an Agile methodology has matured; however, business intelligence has evolved altering the use of Agile principles and practices. The Big Data phenomenon, the volume, variety, and velocity of data, has impacted business intelligence and the use of information. New trends such as fast analytics and data science have emerged as part of business intelligence. This paper addresses how Agile principles and practices have evolved with business intelligence, as well as its challenges and future directions
    • …
    corecore