473 research outputs found

    Optimal Fuzzy Controller Design for Autonomous Robot Path Tracking Using Population-Based Metaheuristics

    Get PDF
    This researchwas funded by projects TecNM-5654.19-P and DemocratAI PID2020-115570GB-C22.In this work, we propose, through the use of population-based metaheuristics, an optimization method that solves the problem of autonomous path tracking using a rear-wheel fuzzy logic controller. This approach enables the design of controllers using rules that are linguistically familiar to human users. Moreover, a new technique that uses three different paths to validate the performance of each candidate configuration is presented. We extend on our previous work by adding two more membership functions to the previous fuzzy model, intending to have a finer-grained adjustment. We tuned the controller using several well-known metaheuristic methods, Genetic Algorithms (GA), Particle Swarm Optimization (PSO), GreyWolf Optimizer (GWO), Harmony Search (HS), and the recent Aquila Optimizer (AO) and Arithmetic Optimization Algorithms. Experiments validate that, compared to published results, the proposed fuzzy controllers have better RMSE-measured performance. Nevertheless, experiments also highlight problems with the common practice of evaluating the performance of fuzzy controllers with a single problem case and performance metric, resulting in controllers that tend to be overtrained.TecNM-5654.19-PDemocratAI PID2020-115570GB-C2

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments

    Mobile Robot Navigation in Static and Dynamic Environments using Various Soft Computing Techniques

    Get PDF
    The applications of the autonomous mobile robot in many fields such as industry, space, defence and transportation, and other social sectors are growing day by day. The mobile robot performs many tasks such as rescue operation, patrolling, disaster relief, planetary exploration, and material handling, etc. Therefore, an intelligent mobile robot is required that could travel autonomously in various static and dynamic environments. The present research focuses on the design and implementation of the intelligent navigation algorithms, which is capable of navigating a mobile robot autonomously in static as well as dynamic environments. Navigation and obstacle avoidance are one of the most important tasks for any mobile robots. The primary objective of this research work is to improve the navigation accuracy and efficiency of the mobile robot using various soft computing techniques. In this research work, Hybrid Fuzzy (H-Fuzzy) architecture, Cascade Neuro-Fuzzy (CN-Fuzzy) architecture, Fuzzy-Simulated Annealing (Fuzzy-SA) algorithm, Wind Driven Optimization (WDO) algorithm, and Fuzzy-Wind Driven Optimization (Fuzzy-WDO) algorithm have been designed and implemented to solve the navigation problems of a mobile robot in different static and dynamic environments. The performances of these proposed techniques are demonstrated through computer simulations using MATLAB software and implemented in real time by using experimental mobile robots. Furthermore, the performances of Wind Driven Optimization algorithm and Fuzzy-Wind Driven Optimization algorithm are found to be most efficient (in terms of path length and navigation time) as compared to rest of the techniques, which verifies the effectiveness and efficiency of these newly built techniques for mobile robot navigation. The results obtained from the proposed techniques are compared with other developed techniques such as Fuzzy Logics, Genetic algorithm (GA), Neural Network, and Particle Swarm Optimization (PSO) algorithm, etc. to prove the authenticity of the proposed developed techniques

    Neuro-Fuzzy Combination for Reactive Mobile Robot Navigation: A Survey

    Get PDF
    Autonomous navigation of mobile robots is a fruitful research area because of the diversity of methods adopted by artificial intelligence. Recently, several works have generally surveyed the methods adopted to solve the path-planning problem of mobile robots. But in this paper, we focus on methods that combine neuro-fuzzy techniques to solve the reactive navigation problem of mobile robots in a previously unknown environment. Based on information sensed locally by an onboard system, these methods aim to design controllers capable of leading a robot to a target and avoiding obstacles encountered in a workspace. Thus, this study explores the neuro-fuzzy methods that have shown their effectiveness in reactive mobile robot navigation to analyze their architectures and discuss the algorithms and metaheuristics adopted in the learning phase

    Analysis and Development of Computational Intelligence based Navigational Controllers for Multiple Mobile Robots

    Get PDF
    Navigational path planning problems of the mobile robots have received considerable attention over the past few decades. The navigation problem of mobile robots are consisting of following three aspects i.e. locomotion, path planning and map building. Based on these three aspects path planning algorithm for a mobile robot is formulated, which is capable of finding an optimal collision free path from the start point to the target point in a given environment. The main objective of the dissertation is to investigate the advanced methodologies for both single and multiple mobile robots navigation in highly cluttered environments using computational intelligence approach. Firstly, three different standalone computational intelligence approaches based on the Adaptive Neuro-Fuzzy Inference System (ANFIS), Cuckoo Search (CS) algorithm and Invasive Weed Optimization (IWO) are presented to address the problem of path planning in unknown environments. Next two different hybrid approaches are developed using CS-ANFIS and IWO-ANFIS to solve the mobile robot navigation problems. The performance of each intelligent navigational controller is demonstrated through simulation results using MATLAB. Experimental results are conducted in the laboratory, using real mobile robots to validate the versatility and effectiveness of the proposed navigation techniques. Comparison studies show, that there are good agreement between them. During the analysis of results, it is noticed that CS-ANFIS and IWO-ANFIS hybrid navigational controllers perform better compared to other discussed navigational controllers. The results obtained from the proposed navigation techniques are validated by comparison with the results from other intelligent techniques such as Fuzzy logic, Neural Network, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and other hybrid algorithms. By investigating the results, finally it is concluded that the proposed navigational methodologies are efficient and robust in the sense, that they can be effectively implemented to solve the path optimization problems of mobile robot in any complex environment

    Grey Wolf Optimizer-Based Approaches to Path Planning and Fuzzy Logic-based Tracking Control for Mobile Robots

    Get PDF
    This paper proposes two applications of Grey Wolf Optimizer (GWO) algorithms to a path planning (PaPl) problem and a Proportional-Integral (PI)-fuzzy controller tuning problem. Both optimization problems solved by GWO algorithms are explained in detail. An off-line GWO-based PaPl approach for Nonholonomic Wheeled Mobile Robots (NWMRs) in static environments is proposed. Once the PaPl problem is solved resulting in the reference trajectory of the robots, the paper also suggests a GWO-based approach to tune cost-effective PI-fuzzy controllers in tracking control problem for NWMRs. The experimental results are demonstrated through simple multiagent settings conducted on the nRobotic platform developed at the Politehnica University of Timisoara, Romania, and they prove both the effectiveness of the two GWO-based approaches and major performance improvement

    Intelligent Navigational Strategies For Multiple Wheeled Mobile Robots Using Artificial Hybrid Methodologies

    Get PDF
    At present time, the application of mobile robot is commonly seen in every fields of science and engineering. The application is not only limited to industries but also in thehousehold, medical, defense, transportation, space and much more. They can perform all kind of tasks which human being cannot do efficiently and accurately such as working in hazardous and highly risk condition, space research etc. Hence, the autonomous navigation of mobile robot is the highly discussed topic of today in an uncertain environment. The present work concentrates on the implementation of the Artificial Intelligence approaches for the mobile robot navigation in an uncertain environment. The obstacle avoidance and optimal path planning is the key issue in autonomous navigation, which is solved in the present work by using artificial intelligent approaches. The methods use for the navigational accuracy and efficiency are Firefly Algorithm (FA), Probability- Fuzzy Logic (PFL), Matrix based Genetic Algorithm (MGA) and Hybrid controller (FAPFL,FA-MGA, FA-PFL-MGA).The proposed work provides an effective navigation of single and multiple mobile robots in both static and dynamic environment. The simulational analysis is carried over the Matlab software and then it is implemented on amobile robot for real-time navigation analysis. During the analysis of the proposed controller, it has been noticed that the Firefly Algorithm performs well as compared to fuzzy and genetic algorithm controller. It also plays an important role inbuilding the successful Hybrid approaches such as FA-PFL, FA-MGA, FA-PFL-MGA. The proposed hybrid methodology perform well over the individual controller especially for pathoptimality and navigational time. The developed controller also proves to be efficient when they are compared with other navigational controller such as Neural Network, Ant Colony Algorithm, Particle Swarm Optimization, Neuro-Fuzzy etc
    corecore