116 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    Get PDF
    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature

    A Survey on Evolutionary Computation Approaches to Feature Selection

    Get PDF
    Feature selection is an important task in data mining and machine learning to reduce the dimensionality of the data and increase the performance of an algorithm, such as a classification algorithm. However, feature selection is a challenging task due mainly to the large search space. A variety of methods have been applied to solve feature selection problems, where evolutionary computation (EC) techniques have recently gained much attention and shown some success. However, there are no comprehensive guidelines on the strengths and weaknesses of alternative approaches. This leads to a disjointed and fragmented field with ultimately lost opportunities for improving performance and successful applications. This paper presents a comprehensive survey of the state-of-the-art work on EC for feature selection, which identifies the contributions of these different algorithms. In addition, current issues and challenges are also discussed to identify promising areas for future research.</p

    Application of particle swarm optimization with ANFIS model for double scroll chaotic system

    Get PDF
    The predictions for the original chaos patterns can be used to correct the distorted chaos pattern which has changed due to any changes whether from undesired disturbance or additional information which can hide under chaos pattern. This information can be recovered when the original chaos pattern is predicted. But unpredictability is most features of chaos, and time series prediction can be used based on the collection of past observations of a variable and analysis it to obtain the underlying relationships and then extrapolate future time series. The additional information often prunes away by several techniques. This paper shows how the chaotic time series prediction is difficult and distort even if Neuro-Fuzzy such as Adaptive Neural Fuzzy Inference System (ANFIS) is used under any disturbance. The paper combined particle swarm (PSO) and (ANFIS) to exam the prediction model and predict the original chaos patterns which comes from the double scroll circuit. Changes in the bias of the nonlinear resistor were used as a disturbance. The predicted chaotic data is compared with data from the chaotic circuit

    A novel intelligent fault diagnosis method of rotating machinery based on deep learning and PSO-SVM

    Get PDF
    A novel intelligent fault diagnosis method based on deep learning and particle swarm optimization support vectors machine (PSO-SVM) is proposed. The method uses deep learning neural network (DNN) to extract fault features automatically, and then uses support vector machine to classify diagnose faults based on extracted features. DNN consists of a stack of denoising autoencoders. Through pre-training and fine-tuning of DNN, features of input parameters can be extracted automatically. This paper uses particle swarm optimization algorithm to select the best parameters for SVM. The extracted features from multiple hidden layers of DNN are used as the input of PSO-SVM. Experimental data is derived from the data of rolling bearing test platform of West University. The results demonstrate that deep learning can automatically extract fault feature, which removes the need for manual feature selection, various signal processing technologies and diagnosis experience, and improves the efficiency of fault feature extraction. Under the condition of small sample size, combining the features of the multiple hidden layers as the input into the PSO-SVM can significantly increase the accuracy of fault diagnosis

    A Novel Ensemble Machine Learning and an Evolutionary Algorithm in Modeling the COVID-19 Epidemic and Optimizing Government Policies

    Get PDF
    © 2022 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TSMC.2022.3143955The spread of the COVID-19 disease has prompted a need for immediate reaction by governments to curb the pandemic. Many countries have adopted different policies and studies are performed to understand the effect of each of the policies on the growth rate of the infected cases. In this article, the data about the policies taken by all countries at each date, and the effect of the policies on the growth rate of the pandemic are used to build a model of the pandemic's behavior. The model takes as input a set of policies and predicts the growth rate of the pandemic. Then, a population-based multi objective optimization algorithm is developed, which uses the model to search through the policy space and finds a set of policies that minimize the cost induced to the society due to the policies and the growth rate of the pandemic. Because of the complexity of the modeling problem and the uncertainty in measuring the growth rate of the pandemic via the models, an ensemble learning algorithm is proposed in this article to improve the performance of individual learning algorithms. The ensemble consists of ten learning algorithms and a metamodel algorithm that is built to predict the accuracy of each learning algorithm for a given data record. The metamodel is a set of support vector machine (SVM) algorithms that is used in the aggregation phase of the ensemble algorithm. Because there is uncertainty in measuring the growth rate via the models, a landscape smoothing operator is proposed in the optimization process, which aims at reducing uncertainty. The algorithm is tested on open access data online and experiments on the ensemble learning and the policy optimization algorithms are performed.Peer reviewe
    • …
    corecore