11 research outputs found

    Code Generation and Global Optimization Techniques for a Reconfigurable PRAM-NUMA Multicore Architecture

    Full text link

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    Computer science I like proceedings of miniconference on 4.11.2011

    Get PDF

    A configurable vector processor for accelerating speech coding algorithms

    Get PDF
    The growing demand for voice-over-packer (VoIP) services and multimedia-rich applications has made increasingly important the efficient, real-time implementation of low-bit rates speech coders on embedded VLSI platforms. Such speech coders are designed to substantially reduce the bandwidth requirements thus enabling dense multichannel gateways in small form factor. This however comes at a high computational cost which mandates the use of very high performance embedded processors. This thesis investigates the potential acceleration of two major ITU-T speech coding algorithms, namely G.729A and G.723.1, through their efficient implementation on a configurable extensible vector embedded CPU architecture. New scalar and vector ISAs were introduced which resulted in up to 80% reduction in the dynamic instruction count of both workloads. These instructions were subsequently encapsulated into a parametric, hybrid SISD (scalar processor)–SIMD (vector) processor. This work presents the research and implementation of the vector datapath of this vector coprocessor which is tightly-coupled to a Sparc-V8 compliant CPU, the optimization and simulation methodologies employed and the use of Electronic System Level (ESL) techniques to rapidly design SIMD datapaths

    A distributed multi-threaded data partitioner with space-filling curve orders

    Get PDF
    The problem discussed in this thesis is distributed data partitioning and data re-ordering on many-core architectures. We present extensive literature survey, with examples from various application domains - scientific computing, databases and large-scale graph processing. We propose a low-overhead partitioning framework based on geometry, that can be used to partition multi-dimensional data where the number of dimensions is >=2. The partitioner linearly orders items with good spatial locality. Partial output is stored on each process in the communication group. Space-filling curves are used to permute data - Morton order is the default curve. For dimensions <=3, we have options to generate Hilbert-like curves. Two metrics used to determine partitioning overheads are memory consumption and execution time, although these two factors are dependent on each other. The focus of this thesis is to reduce partitioning overheads as much as possible. We have described several optimizations to this end - incremental adjustments to partitions, careful dynamic memory management and using multi-threading and multi-processing to advantage. The quality of partitions is an important criteria for evaluating a partitioner. We have used graph partitioners as base-implementations against which our partitions are compared. The degree and edge-cuts of our partitions are comparable to graph partitions for regular grids. For irregular meshes, there is still room for improvement. No comparisons have been made for evaluating partitions of datasets without edges. We have deployed these partitions on two large applications - atmosphere simulation in 2D and adaptive mesh refinement in 3D. An adaptive mesh refinement benchmark was built to be part of the framework, which later became a testcase for evaluating partitions and load-balancing schemes. The performance of this benchmark is discussed in detail in the last chapter

    Case Studies on Optimizing Algorithms for GPU Architectures

    Get PDF
    Modern GPUs are complex, massively multi-threaded, and high-performance. Programmers naturally gravitate towards taking advantage of this high performance for achieving faster results. However, in order to do so successfully, programmers must first understand and then master a new set of skills – writing parallel code, using different types of parallelism, adapting to GPU architectural features, and understanding issues that limit performance. In order to ease this learning process and help GPU programmers become productive more quickly, this dissertation introduces three data access skeletons (DASks) – Block, Column, and Row -- and two block access skeletons (BASks) – Block-By-Block and Warp-by-Warp. Each “skeleton” provides a high-performance implementation framework that partitions data arrays into data blocks and then iterates over those blocks. The programmer must still write “body” methods on individual data blocks to solve their specific problem. These skeletons provide efficient machine dependent data access patterns for use on GPUs. DASks group n data elements into m fixed size data blocks. These m data block are then partitioned across p thread blocks using a 1D or 2D layout pattern. The fixed-size data blocks are parameterized using three C++ template parameters – nWork, WarpSize, and nWarps. Generic programming techniques use these three parameters to enable performance experiments on three different types of parallelism – instruction-level parallelism (ILP), data-level parallelism (DLP), and thread-level parallelism (TLP). These different DASks and BASks are introduced using a simple memory I/O (Copy) case study. A nearest neighbor search case study resulted in the development of DASKs and BASks but does not use these skeletons itself. Three additional case studies – Reduce/Scan, Histogram, and Radix Sort -- demonstrate DASks and BASks in action on parallel primitives and also provides more valuable performance lessons.Doctor of Philosoph

    A PRAM-NUMA model of computation for addressing low-TLP workloads

    No full text
    It is possible to implement the parallel random access machine (PRAM) on a chip multiprocessor (CMP) efficiently with an emulated shared memory (ESM) architecture to gain easy parallel programmability crucial to wider penetration of CMPs to general purpose computing. This implementation relies on exploitation of the slack of parallel applications to hide the latency of the memory system instead of caches, sufficient bisection bandwidth to guarantee high throughput, and hashing to avoid hot spots in intercommunication. Unfortunately this solution can not handle workloads with low thread-level parallelism (TLP) efficiently because then there is not enough parallel slackness available for hiding the latency. In this paper we show that integrating non-uniform memory access (NUMA) support to the PRAM implementation architecture can solve this problem and provide a natural way for migration of the legacy code written for a sequential or multi-core NUMA machine. The obtained PRAM-NUMA hybrid model is defined and architectural implementation of it is outlined on our ECLIPSE ESM CMP framework. A high-level programming language example is given

    A PRAM-NUMA model of computation for addressing low-TLP workloads

    No full text

    A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads

    No full text
    corecore