41 research outputs found

    Letter from the Special Issue Editor

    Get PDF
    Editorial work for DEBULL on a special issue on data management on Storage Class Memory (SCM) technologies

    HMC-Based Accelerator Design For Compressed Deep Neural Networks

    Get PDF
    Deep Neural Networks (DNNs) offer remarkable performance of classifications and regressions in many high dimensional problems and have been widely utilized in real-word cognitive applications. In DNN applications, high computational cost of DNNs greatly hinder their deployment in resource-constrained applications, real-time systems and edge computing platforms. Moreover, energy consumption and performance cost of moving data between memory hierarchy and computational units are higher than that of the computation itself. To overcome the memory bottleneck, data locality and temporal data reuse are improved in accelerator design. In an attempt to further improve data locality, memory manufacturers have invented 3D-stacked memory where multiple layers of memory arrays are stacked on top of each other. Inherited from the concept of Process-In-Memory (PIM), some 3D-stacked memory architectures also include a logic layer that can integrate general-purpose computational logic directly within main memory to take advantages of high internal bandwidth during computation. In this dissertation, we are going to investigate hardware/software co-design for neural network accelerator. Specifically, we introduce a two-phase filter pruning framework for model compression and an accelerator tailored for efficient DNN execution on HMC, which can dynamically offload the primitives and functions to PIM logic layer through a latency-aware scheduling controller. In our compression framework, we formulate filter pruning process as an optimization problem and propose a filter selection criterion measured by conditional entropy. The key idea of our proposed approach is to establish a quantitative connection between filters and model accuracy. We define the connection as conditional entropy over filters in a convolutional layer, i.e., distribution of entropy conditioned on network loss. Based on the definition, different pruning efficiencies of global and layer-wise pruning strategies are compared, and two-phase pruning method is proposed. The proposed pruning method can achieve a reduction of 88% filters and 46% inference time reduction on VGG16 within 2% accuracy degradation. In this dissertation, we are going to investigate hardware/software co-design for neural network accelerator. Specifically, we introduce a two-phase filter pruning framework for model compres- sion and an accelerator tailored for efficient DNN execution on HMC, which can dynamically offload the primitives and functions to PIM logic layer through a latency-aware scheduling con- troller. In our compression framework, we formulate filter pruning process as an optimization problem and propose a filter selection criterion measured by conditional entropy. The key idea of our proposed approach is to establish a quantitative connection between filters and model accuracy. We define the connection as conditional entropy over filters in a convolutional layer, i.e., distribution of entropy conditioned on network loss. Based on the definition, different pruning efficiencies of global and layer-wise pruning strategies are compared, and two-phase pruning method is proposed. The proposed pruning method can achieve a reduction of 88% filters and 46% inference time reduction on VGG16 within 2% accuracy degradation

    The Design of A High Capacity and Energy Efficient Phase Change Main Memory

    Get PDF
    Higher energy-efficiency has become essential in servers for a variety of reasons that range from heavy power and thermal constraints, environmental issues and financial savings. With main memory responsible for at least 30% of the energy consumed by a server, a low power main memory is fundamental to achieving this energy efficiency DRAM has been the technology of choice for main memory for the last three decades primarily because it traditionally combined relatively low power, high performance, low cost and high density. However, with DRAM nearing its density limit, alternative low-power memory technologies, such as Phase-change memory (PCM), have become a feasible replacement. PCM limitations, such as limited endurance and low write performance, preclude simple drop-in replacement and require new architectures and algorithms to be developed. A PCM main memory architecture (PMMA) is introduced in this dissertation, utilizing both DRAM and PCM, to create an energy-efficient main memory that is able to replace a DRAM-only memory. PMMA utilizes a number of techniques and architectural changes to achieve a level of performance that is par with DRAM. PMMA achieves gains in energy-delay of up to 65%, with less than 5% of performance loss and extremely high energy gains. To address the other major shortcoming of PCM, namely limited endurance, a novel, low- overhead wear-leveling algorithm that builds on PMMA is proposed that increases the lifetime of PMMA to match the expected server lifetime so that both server and memory subsystems become obsolete at about the same time. We also study how to better use the excess capacity, traditionally available on PCM devices, to obtain the highest lifetime possible. We show that under specific endurance distributions, the naive choice does not achieve the highest lifetime. We devise rules that empower the designer to select algorithms and parameters to achieve higher lifetime or simplify the design knowing the impact on the lifetime. The techniques presented also apply to other storage class memories (SCM) memories that suffer from limited endurance

    Status of phase change memory in memory hierarchy and its impact on relational database

    Get PDF
    Master'sMASTER OF SCIENC

    Overview of emerging nonvolatile memory technologies

    Get PDF

    Modeling Power Consumption of NAND Flash Memories Using FlashPower

    Full text link

    Architectural Techniques for Multi-Level Cell Phase Change Memory Based Main Memory

    Get PDF
    Phase change memory (PCM) recently has emerged as a promising technology to meet the fast growing demand for large capacity main memory in modern computing systems. Multi-level cell (MLC) PCM storing multiple bits in a single cell offers high density with low per-byte fabrication cost. However, PCM suffers from long write latency, short cell endurance, limited write throughput and high peak power, which makes it challenging to be integrated in the memory hierarchy. To address the long write latency, I propose write truncation to reduce the number of write iterations with the assistance of an extra error correction code (ECC). I also propose form switch (FS) to reduce the storage overhead of the ECC. By storing highly compressible lines in single level cell (SLC) form, FS improves read latency as well. To attack the short cell endurance and large peak power, I propose elastic RESET (ER) to construct triple-level cell PCM. By reducing RESET energy, ER significantly reduces peak power and prolongs PCM lifetime. To improve the write concurrency, I propose fine-grained write power budgeting (FPB) observing a global power budget and regulates power across write iterations according to the step-down power demand of each iteration. A global charge pump is also integrated onto a DIMM to boost power for hot PCM chips while staying within the global power budget. To further reduce the peak power, I propose intra-write RESET scheduling distributing cell RESET initializations in the whole write operation duration, so that the on-chip charge pump size can also be reduced

    IMPROVING THE PERFORMANCE OF HYBRID MAIN MEMORY THROUGH SYSTEM AWARE MANAGEMENT OF HETEROGENEOUS RESOURCES

    Get PDF
    Modern computer systems feature memory hierarchies which typically include DRAM as the main memory and HDD as the secondary storage. DRAM and HDD have been extensively used for the past several decades because of their high performance and low cost per bit at their level of hierarchy. Unfortunately, DRAM is facing serious scaling and power consumption problems, while HDD has suffered from stagnant performance improvement and poor energy efficiency. After all, computer system architects have an implicit consensus that there is no hope to improve future system’s performance and power consumption unless something fundamentally changes. To address the looming problems with DRAM and HDD, emerging Non-Volatile RAMs (NVRAMs) such as Phase Change Memory (PCM) or Spin-Transfer-Toque Magnetoresistive RAM (STT-MRAM) have been actively explored as new media of future memory hierarchy. However, since these NVRAMs have quite different characteristics from DRAM and HDD, integrating NVRAMs into conventional memory hierarchy requires significant architectural re-considerations and changes, imposing additional and complicated design trade-offs on the memory hierarchy design. This work assumes a future system in which both main memory and secondary storage include NVRAMs and are placed on the same memory bus. In this system organization, this dissertation work has addressed a problem facing the efficient exploitation of NVRAMs and DRAM integrated into a future platform’s memory hierarchy. Especially, this dissertation has investigated the system performance and lifetime improvement endowed by a novel system architecture called Memorage which co-manages all available physical NVRAM resources for main memory and storage at a system-level. Also, the work has studied the impact of a model-guided, hardware-driven page swap in a hybrid main memory on the application performance. Together, the two ideas enable a future system to ameliorate high system performance degradation under heavy memory pressure and to avoid an inefficient use of DRAM capacity due to injudicious page swap decisions. In summary, this research has not only demonstrated how emerging NVRAMs can be effectively employed and integrated in order to enhance the performance and endurance of a future system, but also helped system architects understand important design trade-offs for emerging NVRAMs based memory and storage systems

    Systemunterstützung für moderne Speichertechnologien

    Get PDF
    Trust and scalability are the two significant factors which impede the dissemination of clouds. The possibility of privileged access to customer data by a cloud provider limits the usage of clouds for processing security-sensitive data. Low latency cloud services rely on in-memory computations, and thus, are limited by several characteristics of Dynamic RAM (DRAM) such as capacity, density, energy consumption, for example. Two technological areas address these factors. Mainstream server platforms, such as Intel Software Guard eXtensions (SGX) und AMD Secure Encrypted Virtualisation (SEV) offer extensions for trusted execution in untrusted environments. Various technologies of Non-Volatile RAM (NV-RAM) have better capacity and density compared to DRAM and thus can be considered as DRAM alternatives in the future. However, these technologies and extensions require new programming approaches and system support since they add features to the system architecture: new system components (Intel SGX) and data persistence (NV-RAM). This thesis is devoted to the programming and architectural aspects of persistent and trusted systems. For trusted systems, an in-depth analysis of new architectural extensions was performed. A novel framework named EActors and a database engine named STANlite were developed to effectively use the capabilities of trusted~execution. For persistent systems, an in-depth analysis of prospective memory technologies, their features and the possible impact on system architecture was performed. A new persistence model, called the hypervisor-based model of persistence, was developed and evaluated by the NV-Hypervisor. This offers transparent persistence for legacy and proprietary software, and supports virtualisation of persistent memory.Vertrauenswürdigkeit und Skalierbarkeit sind die beiden maßgeblichen Faktoren, die die Verbreitung von Clouds behindern. Die Möglichkeit privilegierter Zugriffe auf Kundendaten durch einen Cloudanbieter schränkt die Nutzung von Clouds bei der Verarbeitung von sicherheitskritischen und vertraulichen Informationen ein. Clouddienste mit niedriger Latenz erfordern die Durchführungen von Berechnungen im Hauptspeicher und sind daher an Charakteristika von Dynamic RAM (DRAM) wie Kapazität, Dichte, Energieverbrauch und andere Aspekte gebunden. Zwei technologische Bereiche befassen sich mit diesen Faktoren: Etablierte Server Plattformen wie Intel Software Guard eXtensions (SGX) und AMD Secure Encrypted Virtualisation (SEV) stellen Erweiterungen für vertrauenswürdige Ausführung in nicht vertrauenswürdigen Umgebungen bereit. Verschiedene Technologien von nicht flüchtigem Speicher bieten bessere Kapazität und Speicherdichte verglichen mit DRAM, und können daher in Zukunft als Alternative zu DRAM herangezogen werden. Jedoch benötigen diese Technologien und Erweiterungen neuartige Ansätze und Systemunterstützung bei der Programmierung, da diese der Systemarchitektur neue Funktionalität hinzufügen: Systemkomponenten (Intel SGX) und Persistenz (nicht-flüchtiger Speicher). Diese Dissertation widmet sich der Programmierung und den Architekturaspekten von persistenten und vertrauenswürdigen Systemen. Für vertrauenswürdige Systeme wurde eine detaillierte Analyse der neuen Architekturerweiterungen durchgeführt. Außerdem wurden das neuartige EActors Framework und die STANlite Datenbank entwickelt, um die neuen Möglichkeiten von vertrauenswürdiger Ausführung effektiv zu nutzen. Darüber hinaus wurde für persistente Systeme eine detaillierte Analyse zukünftiger Speichertechnologien, deren Merkmale und mögliche Auswirkungen auf die Systemarchitektur durchgeführt. Ferner wurde das neue Hypervisor-basierte Persistenzmodell entwickelt und mittels NV-Hypervisor ausgewertet, welches transparente Persistenz für alte und proprietäre Software, sowie Virtualisierung von persistentem Speicher ermöglicht
    corecore