45 research outputs found

    A Handoff using Guard Channels Scheme (HGCS) for Cognitive Radio Networks

    Get PDF
    Spectrum handoff is a very important phenomenon in Cognitive Radio (CR) networks. It provides flawless transmission upon the arrival of primary user (PU) while the channel is in use by the secondary user (SU). Spectrum handoff process provides the SUs with the opportunity to continue their communication on other unoccupied channels as soon as the PU repossesses its channel. FCC (Federal Communications Commission) has released new White Space rules in September 2010 which eliminate the requirement of spectrum sensing, making CRs more flexible. In addition, the CR is to be equipped with TV channel database. Taking these new rules into account, this paper suggests a new handoff scheme, HGCS (Handoff using Guard Channels Scheme), which makes effective use of the guard channels for communication. A preemptive resume priority (PRP) M/G/1 queuing network model is proposed to assess total service time for the suggested HGCS and comparing it to the existing random proactive-decision handoff scheme. Simulation and numerical results verify that HGCS can minimize the handoff delay, hence reduces the total service time compared to the random proactive approach

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    Reinforcement Learning-based Access Schemes in Cognitive Radio Networks

    Get PDF
    In this thesis, we propose different MAC protocols based on three Reinforcement Learning (RL) approaches, namely Q-Learning, Deep Q-Network (DQN), and Deep Deterministic Policy Gradient (DDPG). We exploit the primary user (PU) feedback, in the form of ARQ and CQI bits, to enhance the performance of the secondary user (SU) MAC protocols. Exploiting the PU feedback information can be applied on the top of any SU sensing-based MAC protocol. Our proposed model relies on two main pillars, namely, an infinite-state Partially Observable Markov Decision Process (POMDP) to model the system dynamics besides a queuing-theoretic model for the PU queue; the states represent whether a packet is delivered or not from the PU’s queue and the PU channel state. The proposed RL access schemes are meant to design the best SU’s access probabilities in the absence of prior knowledge of the environment, by exploring and exploiting discrete and continuous action spaces, based on the last observed PU’s feedback. The performance of the proposed schemes show better results compared to conventional methods under more realistic assumptions, which is one major advantage of our proposed MAC protocols
    corecore