62 research outputs found

    Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception

    Get PDF
    This thesis presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The uncertainty in the environment arises by the fact that the intentions as well as the future trajectories of the surrounding drivers cannot be measured directly but can only be estimated in a probabilistic fashion. Even the perception of objects is uncertain due to sensor noise or possible occlusions. When driving in such environments, the autonomous car must predict the behavior of the other drivers and plan safe, comfortable and legal trajectories. Planning such trajectories requires robust decision making when several high-level options are available for the autonomous car. Current planning algorithms for automated driving split the problem into different subproblems, ranging from discrete, high-level decision making to prediction and continuous trajectory planning. This separation of one problem into several subproblems, combined with rule-based decision making, leads to sub-optimal behavior. This thesis presents a global, closed-loop formulation for the motion planning problem which intertwines action selection and corresponding prediction of the other agents in one optimization problem. The global formulation allows the planning algorithm to make the decision for certain high-level options implicitly. Furthermore, the closed-loop manner of the algorithm optimizes the solution for various, future scenarios concerning the future behavior of the other agents. Formulating prediction and planning as an intertwined problem allows for modeling interaction, i.e. the future reaction of the other drivers to the behavior of the autonomous car. The problem is modeled as a partially observable Markov decision process (POMDP) with a discrete action and a continuous state and observation space. The solution to the POMDP is a policy over belief states, which contains different reactive plans for possible future scenarios. Surrounding drivers are modeled with interactive, probabilistic agent models to account for their prediction uncertainty. The field of view of the autonomous car is simulated ahead over the whole planning horizon during the optimization of the policy. Simulating the possible, corresponding, future observations allows the algorithm to select actions that actively reduce the uncertainty of the world state. Depending on the scenario, the behavior of the autonomous car is optimized in (combined lateral and) longitudinal direction. The algorithm is formulated in a generic way and solved online, which allows for applying the algorithm on various road layouts and scenarios. While such a generic problem formulation is intractable to solve exactly, this thesis demonstrates how a sufficiently good approximation to the optimal policy can be found online. The problem is solved by combining state of the art Monte Carlo tree search algorithms with near-optimal, domain specific roll-outs. The algorithm is evaluated in scenarios such as the crossing of intersections under unknown intentions of other crossing vehicles, interactive lane changes in narrow gaps and decision making at intersections with large occluded areas. It is shown that the behavior of the closed-loop planner is less conservative than comparable open-loop planners. More precisely, it is even demonstrated that the policy enables the autonomous car to drive in a similar way as an omniscient planner with full knowledge of the scene. It is also demonstrated how the autonomous car executes actions to actively gather more information about the surrounding and to reduce the uncertainty of its belief state

    Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception

    Get PDF
    This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty

    Improving Automated Driving through Planning with Human Internal States

    Full text link
    This work examines the hypothesis that partially observable Markov decision process (POMDP) planning with human driver internal states can significantly improve both safety and efficiency in autonomous freeway driving. We evaluate this hypothesis in a simulated scenario where an autonomous car must safely perform three lane changes in rapid succession. Approximate POMDP solutions are obtained through the partially observable Monte Carlo planning with observation widening (POMCPOW) algorithm. This approach outperforms over-confident and conservative MDP baselines and matches or outperforms QMDP. Relative to the MDP baselines, POMCPOW typically cuts the rate of unsafe situations in half or increases the success rate by 50%.Comment: Preprint before submission to IEEE Transactions on Intelligent Transportation Systems. arXiv admin note: text overlap with arXiv:1702.0085

    Limited Visibility and Uncertainty Aware Motion Planning for Automated Driving

    Full text link
    Adverse weather conditions and occlusions in urban environments result in impaired perception. The uncertainties are handled in different modules of an automated vehicle, ranging from sensor level over situation prediction until motion planning. This paper focuses on motion planning given an uncertain environment model with occlusions. We present a method to remain collision free for the worst-case evolution of the given scene. We define criteria that measure the available margins to a collision while considering visibility and interactions, and consequently integrate conditions that apply these criteria into an optimization-based motion planner. We show the generality of our method by validating it in several distinct urban scenarios

    Belief State Planning for Autonomously Navigating Urban Intersections

    Full text link
    Urban intersections represent a complex environment for autonomous vehicles with many sources of uncertainty. The vehicle must plan in a stochastic environment with potentially rapid changes in driver behavior. Providing an efficient strategy to navigate through urban intersections is a difficult task. This paper frames the problem of navigating unsignalized intersections as a partially observable Markov decision process (POMDP) and solves it using a Monte Carlo sampling method. Empirical results in simulation show that the resulting policy outperforms a threshold-based heuristic strategy on several relevant metrics that measure both safety and efficiency.Comment: 6 pages, 6 figures, accepted to IV201

    Probabilistic Motion Planning for Automated Vehicles

    Get PDF
    This thesis targets the problem of motion planning for automated vehicles. As a prerequisite for their on-road deployment, automated vehicles must show an appropriate and reliable driving behavior in mixed traffic, i.e. alongside human drivers. Besides the uncertainties resulting from imperfect perception, occlusions and limited sensor range, also the uncertainties in the behavior of other traffic participants have to be considered. Related approaches for motion planning in mixed traffic often employ a deterministic problem formulation. The solution of such formulations is restricted to a single trajectory. Deviations from the prediction of other traffic participants are accounted for during replanning, while large uncertainties lead to conservative and over-cautious behavior. As a result of the shortcomings of these formulations in cooperative scenarios and scenarios with severe uncertainties, probabilistic approaches are pursued. Due to the need for real-time capability, however, a holistic uncertainty treatment often induces a strong limitation of the action space of automated vehicles. Moreover, safety and traffic rule compliance are often not considered. Thus, in this work, three motion planning approaches and a scenario-based safety approach are presented. The safety approach is based on an existing concept, which targets the guarantee that automated vehicles will never cause accidents. This concept is enhanced by the consideration of traffic rules for crossing and merging traffic, occlusions, limited sensor range and lane changes. The three presented motion planning approaches are targeted towards the different predominant uncertainties in different scenarios, while operating in a continuous action space. For non-interactive scenarios with clear precedence, a probabilistic approach is presented. The problem is modeled as a partially observable Markov decision process (POMDP). In contrast to existing approaches, the underlying assumption is that the prediction of the future progression of the uncertainty in the behavior of other traffic participants can be performed independently of the automated vehicle\u27s motion plan. In addition to this prediction of currently visible traffic participants, the influence of occlusions and limited sensor range is considered. Despite its thorough uncertainty consideration, the presented approach facilitates planning in a continuous action space. Two further approaches are targeted towards the predominant uncertainties in interactive scenarios. In order to facilitate lane changes in dense traffic, a rule-based approach is proposed. The latter seeks to actively reduce the uncertainty in whether other vehicles willingly make room for a lane change. The generated trajectories are safe and traffic rule compliant with respect to the presented safety approach. To facilitate cooperation in scenarios without clear precedence, a multi-agent approach is presented. The globally optimal solution to the multi-agent problem is first analyzed regarding its ambiguity. If an unambiguous, cooperative solution is found, it is pursued. Still, the compliance of other vehicles with the presumed cooperation model is checked, and a conservative fallback trajectory is pursued in case of non-compliance. The performance of the presented approaches is shown in various scenarios with intersecting lanes, partly with limited visibility, as well as lane changes and a narrowing without predefined right of way

    Obstacle-aware Adaptive Informative Path Planning for UAV-based Target Search

    Full text link
    Target search with unmanned aerial vehicles (UAVs) is relevant problem to many scenarios, e.g., search and rescue (SaR). However, a key challenge is planning paths for maximal search efficiency given flight time constraints. To address this, we propose the Obstacle-aware Adaptive Informative Path Planning (OA-IPP) algorithm for target search in cluttered environments using UAVs. Our approach leverages a layered planning strategy using a Gaussian Process (GP)-based model of target occupancy to generate informative paths in continuous 3D space. Within this framework, we introduce an adaptive replanning scheme which allows us to trade off between information gain, field coverage, sensor performance, and collision avoidance for efficient target detection. Extensive simulations show that our OA-IPP method performs better than state-of-the-art planners, and we demonstrate its application in a realistic urban SaR scenario.Comment: Paper accepted for International Conference on Robotics and Automation (ICRA-2019) to be held at Montreal, Canad

    Motion Planning for Autonomous Vehicles in Partially Observable Environments

    Get PDF
    Unsicherheiten, welche aus Sensorrauschen oder nicht beobachtbaren Manöverintentionen anderer Verkehrsteilnehmer resultieren, akkumulieren sich in der Datenverarbeitungskette eines autonomen Fahrzeugs und führen zu einer unvollständigen oder fehlinterpretierten Umfeldrepräsentation. Dadurch weisen Bewegungsplaner in vielen Fällen ein konservatives Verhalten auf. Diese Dissertation entwickelt zwei Bewegungsplaner, welche die Defizite der vorgelagerten Verarbeitungsmodule durch Ausnutzung der Reaktionsfähigkeit des Fahrzeugs kompensieren. Diese Arbeit präsentiert zuerst eine ausgiebige Analyse über die Ursachen und Klassifikation der Unsicherheiten und zeigt die Eigenschaften eines idealen Bewegungsplaners auf. Anschließend befasst sie sich mit der mathematischen Modellierung der Fahrziele sowie den Randbedingungen, welche die Sicherheit gewährleisten. Das resultierende Planungsproblem wird mit zwei unterschiedlichen Methoden in Echtzeit gelöst: Zuerst mit nichtlinearer Optimierung und danach, indem es als teilweise beobachtbarer Markov-Entscheidungsprozess (POMDP) formuliert und die Lösung mit Stichproben angenähert wird. Der auf nichtlinearer Optimierung basierende Planer betrachtet mehrere Manöveroptionen mit individuellen Auftrittswahrscheinlichkeiten und berechnet daraus ein Bewegungsprofil. Er garantiert Sicherheit, indem er die Realisierbarkeit einer zufallsbeschränkten Rückfalloption gewährleistet. Der Beitrag zum POMDP-Framework konzentriert sich auf die Verbesserung der Stichprobeneffizienz in der Monte-Carlo-Planung. Erstens werden Informationsbelohnungen definiert, welche die Stichproben zu Aktionen führen, die eine höhere Belohnung ergeben. Dabei wird die Auswahl der Stichproben für das reward-shaped Problem durch die Verwendung einer allgemeinen Heuristik verbessert. Zweitens wird die Kontinuität in der Reward-Struktur für die Aktionsauswahl ausgenutzt und dadurch signifikante Leistungsverbesserungen erzielt. Evaluierungen zeigen, dass mit diesen Planern große Erfolge in Fahrversuchen und Simulationsstudien mit komplexen Interaktionsmodellen erreicht werden

    Decision-theoretic MPC: Motion Planning with Weighted Maneuver Preferences Under Uncertainty

    Full text link
    Continuous optimization based motion planners require deciding on a maneuver homotopy before optimizing the trajectory. Under uncertainty, maneuver intentions of other participants can be unclear, and the vehicle might not be able to decide on the most suitable maneuver. This work introduces a method that incorporates multiple maneuver preferences in planning. It optimizes the trajectory by considering weighted maneuver preferences together with uncertainties ranging from perception to prediction while ensuring the feasibility of a chance-constrained fallback option. Evaluations in both driving experiments and simulation studies show enhanced interaction capabilities and comfort levels compared to conventional planners, which consider only a single maneuver
    corecore