6,528 research outputs found

    Depth Super-Resolution Meets Uncalibrated Photometric Stereo

    Full text link
    A novel depth super-resolution approach for RGB-D sensors is presented. It disambiguates depth super-resolution through high-resolution photometric clues and, symmetrically, it disambiguates uncalibrated photometric stereo through low-resolution depth cues. To this end, an RGB-D sequence is acquired from the same viewing angle, while illuminating the scene from various uncalibrated directions. This sequence is handled by a variational framework which fits high-resolution shape and reflectance, as well as lighting, to both the low-resolution depth measurements and the high-resolution RGB ones. The key novelty consists in a new PDE-based photometric stereo regularizer which implicitly ensures surface regularity. This allows to carry out depth super-resolution in a purely data-driven manner, without the need for any ad-hoc prior or material calibration. Real-world experiments are carried out using an out-of-the-box RGB-D sensor and a hand-held LED light source.Comment: International Conference on Computer Vision (ICCV) Workshop, 201

    Cross-diffusion systems for image processing: II. The nonlinear case

    Full text link
    In this paper the use of nonlinear cross-diffu\-sion systems to model image restoration is investigated, theoretically and numerically. In the first case, well-posedness, scale-space properties and long time behaviour are analyzed. From a numerical point of view, a computational study of the performance of the models is carried out, suggesting their diversity and potentialities to treat image filtering problems. The present paper is a continuation of a previous work of the same authors, devoted to linear cross-diffusion models. \keywords{Cross-diffusion \and Complex diffusion \and Image restoration

    An Octree-Based Approach towards Efficient Variational Range Data Fusion

    Full text link
    Volume-based reconstruction is usually expensive both in terms of memory consumption and runtime. Especially for sparse geometric structures, volumetric representations produce a huge computational overhead. We present an efficient way to fuse range data via a variational Octree-based minimization approach by taking the actual range data geometry into account. We transform the data into Octree-based truncated signed distance fields and show how the optimization can be conducted on the newly created structures. The main challenge is to uphold speed and a low memory footprint without sacrificing the solutions' accuracy during optimization. We explain how to dynamically adjust the optimizer's geometric structure via joining/splitting of Octree nodes and how to define the operators. We evaluate on various datasets and outline the suitability in terms of performance and geometric accuracy.Comment: BMVC 201

    Modèles de fusion et diffusion par équations aux dérivées partielles (application à la sismique azimutale)

    Get PDF
    Ce mémoire porte sur le développement de nouvelles méthodes de fusion d images à partir d un formalisme à base d Equations aux Dérivées Partielles (EDP). Les deux premiers chapitres bibliographiques portent sur les 2 domaines au centre de notre problématique : la fusion et les EDP. Le Chapitre 3 est consacré à la présentation progressive de notre modèle EDP de fusion constitué par un terme de fusion (diffusion inverse isotrope) et un terme de régularisation. De plus, un des attraits de l approche EDP est de pouvoir traiter avec le formalisme des données bruitées. L association d un terme de diffusion dépendant du type de données à traiter est donc abordée. Le chapitre 4 est consacré à l application des modèles de fusion-diffusion aux données sismiques. Pour répondre aux besoins de filtrage de ces données sismiques, nous proposons deux méthodes originales de diffusion 3D. Nous présenterons dans ce mémoire l approche de fusion 3D intégrant une de ces méthodes nommée SFPD (Seismic Fault Preserving Diffusion).This thesis focuses on developing new methods for image fusion based on Partial Differential Equations (PDE). The starting point of the proposed fusion approach is the enhancement process contained in most classical diffusion models. The aim of enhancing contours is similar to one of the purpose of the fusion: the relevant information (equivalent to the contours) must be found in the output image. In general, the contour enhancement uses an inverse diffusion equation. In our model of fusion, the evolution of each input image is led by such equation. This single equation must necessarily be accompanied by a global information detector useful to select the signal to be injected. In addition, an inverse diffusion equation, like any Gaussian deconvolution, raises problems of stability and regularization of the solution. To resolve these problems, a regularization term is integrated into the model. The general model of fusion is finally similar to an evolving cooperative system, where the information contained in each image starts moving towards relevant information, leading to a convergent process. The essential interest of PDE approach is to deal with noisy data by combining in a natural way two processes: fusion and diffusion. The fusion-diffusion proposed model is easy to adapt to different types of data by tuning the PDE. In order to adapt the fusion-diffusion model to a specific application, I propose 2 diffusion models: Seismic fault preserving diffusion and 3D directional diffusion . The aim is to denoise 3D seismic data. These models are integrated into the fusion-diffusion approach. One of them is successfully transferred to the industrial partner: french oil company Total. The efficiency of our models (fusion and fusion-diffusion) is proven through an experimental plan in both noisy and noisy-free data.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
    corecore