317 research outputs found

    Optimization of plasmon–plasmon coupling in photorefractive layered media

    No full text
    In this paper we study grating-induced plasmon–plasmon coupling in photorefractive layered media using a weakcoupling approximation. The method used is applicable to general layered structures that support both plasmonic and optical modes, such as photorefractive liquid crystal cells. The approximate equations are accurate when compared to S matrix approaches and capture the plasmon propagation at the surface of the device along with the optical modes guided by the layered geometry underneath. Analysis of the resulting model provides insight into the effect of the control parameters in this device and the means to optimize the diffraction efficiency. For example, by considering the case in which the plasmon is spectrally separated from the guided modes it is possible to determine the optimum gold thickness and grating strength required to obtain the strongest possible diffraction

    Propagation of acoustic-gravity waves in inhomogeneous ocean environment based on modal expansions and HP-FEM

    Get PDF
    A coupled mode model is presented for the propagation of acoustic-gravity waves in layered ocean waveguides. The analysis extends previous work for acoustic waves in inhomogeneous environment. The coupled mode system is derived by means of a variational principle in conjunction with local mode series expansion, obtained by utilizing eigenfunction systems defined in the vertical section. These are obtained through the solution of vertical eigenvalue problems formulated along the waveguide. A crucial factor is the inclusion of additional modes accounting for the effects of spatialy varying boundaries and interfaces. This enhancement provides an implicit summation for the slowly convergent part of the localmode series, rendering the series rapidly convergent, increasing substantialy the efficiency of the method. Particular aspects of the method include high order Lagrange Finite Element Methods for the solution of local vertical eigenvalue problems in the case of multilayered waveguides, and Gauss-type quadrature for the computation of the coupled-mode system coefficients. The above aspects make the present method quite efficient for long range propagation in extended waveguides, such as the ones found in geophysical applications, e.g. ocean basins, as only few modes are needed for the accurate representation of the wave field
    • …
    corecore