50 research outputs found

    Quadratic-exponential coherent feedback control of linear quantum stochastic systems

    Full text link
    This paper considers a risk-sensitive optimal control problem for a field-mediated interconnection of a quantum plant with a coherent (measurement-free) quantum controller. The plant and the controller are multimode open quantum harmonic oscillators governed by linear quantum stochastic differential equations, which are coupled to each other and driven by multichannel quantum Wiener processes modelling the external bosonic fields. The control objective is to internally stabilize the closed-loop system and minimize the infinite-horizon asymptotic growth rate of a quadratic-exponential functional which penalizes the plant variables and the controller output. We obtain first-order necessary conditions of optimality for this problem by computing the partial Frechet derivatives of the cost functional with respect to the energy and coupling matrices of the controller in frequency domain and state space. An infinitesimal equivalence between the risk-sensitive and weighted coherent quantum LQG control problems is also established. In addition to variational methods, we employ spectral factorizations and infinite cascades of auxiliary classical systems. Their truncations are applicable to numerical optimization algorithms (such as the gradient descent) for coherent quantum risk-sensitive feedback synthesis.Comment: 29 pages, 3 figure

    Levitation and control of particles with internal degrees of freedom

    Get PDF
    Levitodynamics is a fast growing field that studies the levitation and manipulation of micro- and nanoobjects, fuelled by both fundamental physics questions and technological applications. Due to the isolated nature of trapped particles, levitated systems are highly decoupled from the environment, and offer experimental possibilities that are absent in clamped nanomechanical oscillators. In particular, a central question in quantum physics is how the transition between the classical and quantum world materializes, and levitated objects represent a promising avenue to study this intermediate regime. In the last years, most levitation experiments have been restricted to optically trapped silica nanoparticles in vacuum, controlling the particle's position with intensity modulated laser beams. However, the use of optical traps severely constrains the experiments that can be performed, because few particle materials can withstand the optical absorption and resulting heating in vacuum. This completely prevents the use of objects with internal degrees of freedom, which---coupled to mechanical variables---offer a clear path towards the study of quantum phenomena at the macroscale. In this thesis, we address these issues by considering other types of trap and feedback schemes, achieving excellent control on the dynamics of optically active nanoparticles. With stochastic calculus, simulations and experiments, we study the dynamics of trapped particles in different regimes, considering also a hybrid quadrupole-optical trapping scheme. Then, using a Paul trap of our own design, we demonstrate the trapping, interrogation and feedback cooling of a nanodiamond hosting a single NV center in vacuum, a clear candidate to perform quantum physics experiments at the single spin level. Finally, we discuss and implement an optimal controller to cool the center of mass motion of an optically levitated nanoparticle. The feedback is realized by exerting a Coulomb force on a charged particle with a pair of electrodes, and thus requires no optics.La levitodinàmica és un camp de la física en ràpida expansió que estudia la levitació i manipulació de micro- i nano-objectes, empesa per la possibilitat de solucionar trencaclosques de física fonamental i de desenvolupar noves aplicacions tecnològiques. Gràcies al gran aïllament de les partícules en levitació, l’evolució dels sistemes levitodinàmics està molt desacoplada del seu entorn. Per consegüent, permeten fer experiments que no serien possibles en nanooscil·ladors mecànics sobre substrat. En particular, una qüestió central en física consisteix en entendre com es produeix la transició entre els mons clàssic i quàntic; els objectes en levitació permeten estudiar aquest règim intermedi de manera innovadora. En els últims anys, la majoria d’experiments de levitodinàmica s’han limitat a atrapar òpticament partícules de sílice en el buit, tot controlant la posició de la partícula amb feixos làser modulats. Tot i així, l’ús de trampes òptiques suposa un obstacle a l’hora d’exportar aquests experiments a règims més diversos perquè, a baixes pressions, pocs materials són capaços de suportar les altes temperatures resultants de l’absorció de llum làser. Això impedeix l’ús d’objectes amb graus de llibertat interns, que –acoplats a variables mecàniques– suposen un full de ruta clar per estudiar fenòmens quàntics a escala macroscòpica En aquesta tesi, adrecem aquestes qüestions tot considerant altres tipus de trampa i tècniques de feedback, i assolim un control excel·lent de la dinàmica de nanopartícules òpticament actives en levitació. Mitjançant càlcul estocàstic, simulacions i experiments, estudiem la dinàmica de les partícules en règims diversos, àdhuc considerant un esquema híbrid de trampa de Paul-òptica. A continuació, utilitzant una trampa de Paul, demostrem experimentalment l’atrapament, interrogació i feedback-cooling en el buit d’un nanodiamant que conté un únic NV− center, un clar candidat per a la realització d’experiments de física quàntica amb un únic spin. Finalment, estudiem i implementem un controlador òptim per a refredar el centre de massa d’una partícula òpticament levitada. El feedback es realitza exercint una força de Coulomb sobre una partícula carregada positivament mitjançant un parell d’elèctrodes, i per tant no requereix elements òptic
    corecore