3,669 research outputs found

    Robust isogeometric preconditioners for the Stokes system based on the Fast Diagonalization method

    Full text link
    In this paper we propose a new class of preconditioners for the isogeometric discretization of the Stokes system. Their application involves the solution of a Sylvester-like equation, which can be done efficiently thanks to the Fast Diagonalization method. These preconditioners are robust with respect to both the spline degree and mesh size. By incorporating information on the geometry parametrization and equation coefficients, we maintain efficiency on non-trivial computational domains and for variable kinematic viscosity. In our numerical tests we compare to a standard approach, showing that the overall iterative solver based on our preconditioners is significantly faster.Comment: 31 pages, 4 figure

    Space-time least-squares isogeometric method and efficient solver for parabolic problems

    Full text link
    In this paper, we propose a space-time least-squares isogeometric method to solve parabolic evolution problems, well suited for high-degree smooth splines in the space-time domain. We focus on the linear solver and its computational efficiency: thanks to the proposed formulation and to the tensor-product construction of space-time splines, we can design a preconditioner whose application requires the solution of a Sylvester-like equation, which is performed efficiently by the fast diagonalization method. The preconditioner is robust w.r.t. spline degree and mesh size. The computational time required for its application, for a serial execution, is almost proportional to the number of degrees-of-freedom and independent of the polynomial degree. The proposed approach is also well-suited for parallelization.Comment: 29 pages, 8 figure

    On multi-degree splines

    Full text link
    Multi-degree splines are piecewise polynomial functions having sections of different degrees. For these splines, we discuss the construction of a B-spline basis by means of integral recurrence relations, extending the class of multi-degree splines that can be derived by existing approaches. We then propose a new alternative method for constructing and evaluating the B-spline basis, based on the use of so-called transition functions. Using the transition functions we develop general algorithms for knot-insertion, degree elevation and conversion to B\'ezier form, essential tools for applications in geometric modeling. We present numerical examples and briefly discuss how the same idea can be used in order to construct geometrically continuous multi-degree splines

    Computational complexity and memory usage for multi-frontal direct solvers in structured mesh finite elements

    Full text link
    The multi-frontal direct solver is the state-of-the-art algorithm for the direct solution of sparse linear systems. This paper provides computational complexity and memory usage estimates for the application of the multi-frontal direct solver algorithm on linear systems resulting from B-spline-based isogeometric finite elements, where the mesh is a structured grid. Specifically we provide the estimates for systems resulting from Cp−1C^{p-1} polynomial B-spline spaces and compare them to those obtained using C0C^0 spaces.Comment: 8 pages, 2 figure

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods

    Optimal-order isogeometric collocation at Galerkin superconvergent points

    Full text link
    In this paper we investigate numerically the order of convergence of an isogeometric collocation method that builds upon the least-squares collocation method presented in [1] and the variational collocation method presented in [2]. The focus is on smoothest B-splines/NURBS approximations, i.e, having global Cp−1C^{p-1} continuity for polynomial degree pp. Within the framework of [2], we select as collocation points a subset of those considered in [1], which are related to the Galerkin superconvergence theory. With our choice, that features local symmetry of the collocation stencil, we improve the convergence behaviour with respect to [2], achieving optimal L2L^2-convergence for odd degree B-splines/NURBS approximations. The same optimal order of convergence is seen in [1], where, however a least-squares formulation is adopted. Further careful study is needed, since the robustness of the method and its mathematical foundation are still unclear.Comment: 21 pages, 20 figures (35 pdf images
    • …
    corecore