4,689 research outputs found

    Secure Mobile Agents in Electronic Commerce by Using Undetachable Signatures from Pairings

    Get PDF
    It is expect that mobile agents technology will bring significant benefits to electronic commerce. But security issues, especially threats from malicious hosts, become a great obstacle of widespread deployment of applications in electronic commerce based on mobile agents technology. Undetachable digital signature is a category of digital signatures to secure mobile agents against malicious hosts. An undetachable signature scheme by using encrypted functions from bilinear pairings was proposed in this paper. The security of this scheme base on the computational intractability of discrete logarithm problem and computational Diffe-Hellman problem on gap Diffle-Hellman group. Furthermore, the scheme satisfies all the requirements of a strong non-designated proxy signature i.e. verifiability, strong unforgeability, strong identifiability, strong undeniability and preventions of misuse. An undetachable threshold signature scheme that enable the customer to provide n mobile agents with ‘shares’ of the undetachable signature function is also provided. It is able to provide more reliability than classical undetachable signatures

    CONSTRUCTION OF EFFICIENT AUTHENTICATION SCHEMES USING TRAPDOOR HASH FUNCTIONS

    Get PDF
    In large-scale distributed systems, where adversarial attacks can have widespread impact, authentication provides protection from threats involving impersonation of entities and tampering of data. Practical solutions to authentication problems in distributed systems must meet specific constraints of the target system, and provide a reasonable balance between security and cost. The goal of this dissertation is to address the problem of building practical and efficient authentication mechanisms to secure distributed applications. This dissertation presents techniques to construct efficient digital signature schemes using trapdoor hash functions for various distributed applications. Trapdoor hash functions are collision-resistant hash functions associated with a secret trapdoor key that allows the key-holder to find collisions between hashes of different messages. The main contributions of this dissertation are as follows: 1. A common problem with conventional trapdoor hash functions is that revealing a collision producing message pair allows an entity to compute additional collisions without knowledge of the trapdoor key. To overcome this problem, we design an efficient trapdoor hash function that prevents all entities except the trapdoor key-holder from computing collisions regardless of whether collision producing message pairs are revealed by the key-holder. 2. We design a technique to construct efficient proxy signatures using trapdoor hash functions to authenticate and authorize agents acting on behalf of users in agent-based computing systems. Our technique provides agent authentication, assurance of agreement between delegator and agent, security without relying on secure communication channels and control over an agent’s capabilities. 3. We develop a trapdoor hash-based signature amortization technique for authenticating real-time, delay-sensitive streams. Our technique provides independent verifiability of blocks comprising a stream, minimizes sender-side and receiver-side delays, minimizes communication overhead, and avoids transmission of redundant information. 4. We demonstrate the practical efficacy of our trapdoor hash-based techniques for signature amortization and proxy signature construction by presenting discrete log-based instantiations of the generic techniques that are efficient to compute, and produce short signatures. Our detailed performance analyses demonstrate that the proposed schemes outperform existing schemes in computation cost and signature size. We also present proofs for security of the proposed discrete-log based instantiations against forgery attacks under the discrete-log assumption

    A new revocable and re-delegable proxy signature and its application

    Get PDF
    With the popularity of cloud computing and mobile Apps, on-demand services such as on-line music or audio streaming and vehicle booking are widely available nowadays. In order to allow efficient delivery and management of the services, for large-scale on-demand systems, there is usually a hierarchy where the service provider can delegate its service to a top-tier (e.g., countrywide) proxy who can then further delegate the service to lower level (e.g., region-wide) proxies. Secure (re-)delegation and revocation are among the most crucial factors for such systems. In this paper, we investigate the practical solutions for achieving re-delegation and revocation utilizing proxy signature. Although proxy signature has been extensively studied in the literature, no previous solution can achieve both properties. To fill the gap, we introduce the notion of revocable and re-delegable proxy signature that supports efficient revocation and allows a proxy signer to re-delegate its signing right to other proxy signers without the interaction with the original signer. We define the formal security models for this new primitive and present an efficient scheme that can achieve all the security properties. We also present a secure on-line revocable and re-delegate vehicle ordering system (RRVOS) as one of the applications of our proposed scheme

    Secure Mobile Agents with Designated Hosts

    Get PDF
    Mobile agents often travel in a hostile environment where their security and privacy could be compromised by any party including remote hosts in which agents visit and get services. It was proposed in the literature that the host visited by an agent should jointly sign a service agreement with the agent\u27s home, where a proxy-signing model was deployed and every host in the agent system can sign. We observe that this actually poses a serious problem in that a host that should be excluded from an underlying agent network could also send a signed service agreement. In order to solve this problem, we propose a secure mobile agent scheme achieving host authentication with designated hosts, where only selected hosts can be included in the agent network. We also present a security model and provide a rigorous security proof to our scheme

    Proceedings of the 2nd International Workshop on Security in Mobile Multiagent Systems

    Get PDF
    This report contains the Proceedings of the Second Workshop on Security on Security of Mobile Multiagent Systems (SEMAS2002). The Workshop was held in Montreal, Canada as a satellite event to the 5th International Conference on Autonomous Agents in 2001. The far reaching influence of the Internet has resulted in an increased interest in agent technologies, which are poised to play a key role in the implementation of successful Internet and WWW-based applications in the future. While there is still considerable hype concerning agent technologies, there is also an increasing awareness of the problems involved. In particular, that these applications will not be successful unless security issues can be adequately handled. Although there is a large body of work on cryptographic techniques that provide basic building-blocks to solve specific security problems, relatively little work has been done in investigating security in the multiagent system context. Related problems are secure communication between agents, implementation of trust models/authentication procedures or even reflections of agents on security mechanisms. The introduction of mobile software agents significantly increases the risks involved in Internet and WWW-based applications. For example, if we allow agents to enter our hosts or private networks, we must offer the agents a platform so that they can execute correctly but at the same time ensure that they will not have deleterious effects on our hosts or any other agents / processes in our network. If we send out mobile agents, we should also be able to provide guarantees about specific aspects of their behaviour, i.e., we are not only interested in whether the agents carry out-out their intended task correctly. They must defend themselves against attacks initiated by other agents, and survive in potentially malicious environments. Agent technologies can also be used to support network security. For example in the context of intrusion detection, intelligent guardian agents may be used to analyse the behaviour of agents on a firewall or intelligent monitoring agents can be used to analyse the behaviour of agents migrating through a network. Part of the inspiration for such multi-agent systems comes from primitive animal behaviour, such as that of guardian ants protecting their hill or from biological immune systems

    EFFICIENT AND SCALABLE NETWORK SECURITY PROTOCOLS BASED ON LFSR SEQUENCES

    Get PDF
    The gap between abstract, mathematics-oriented research in cryptography and the engineering approach of designing practical, network security protocols is widening. Network researchers experiment with well-known cryptographic protocols suitable for different network models. On the other hand, researchers inclined toward theory often design cryptographic schemes without considering the practical network constraints. The goal of this dissertation is to address problems in these two challenging areas: building bridges between practical network security protocols and theoretical cryptography. This dissertation presents techniques for building performance sensitive security protocols, using primitives from linear feedback register sequences (LFSR) sequences, for a variety of challenging networking applications. The significant contributions of this thesis are: 1. A common problem faced by large-scale multicast applications, like real-time news feeds, is collecting authenticated feedback from the intended recipients. We design an efficient, scalable, and fault-tolerant technique for combining multiple signed acknowledgments into a single compact one and observe that most signatures (based on the discrete logarithm problem) used in previous protocols do not result in a scalable solution to the problem. 2. We propose a technique to authenticate on-demand source routing protocols in resource-constrained wireless mobile ad-hoc networks. We develop a single-round multisignature that requires no prior cooperation among nodes to construct the multisignature and supports authentication of cached routes. 3. We propose an efficient and scalable aggregate signature, tailored for applications like building efficient certificate chains, authenticating distributed and adaptive content management systems and securing path-vector routing protocols. 4. We observe that blind signatures could form critical building blocks of privacypreserving accountability systems, where an authority needs to vouch for the legitimacy of a message but the ownership of the message should be kept secret from the authority. We propose an efficient blind signature that can serve as a protocol building block for performance sensitive, accountability systems. All special forms digital signatures—aggregate, multi-, and blind signatures—proposed in this dissertation are the first to be constructed using LFSR sequences. Our detailed cost analysis shows that for a desired level of security, the proposed signatures outperformed existing protocols in computation cost, number of communication rounds and storage overhead

    Bringing data minimization to digital wallets at scale with general-purpose zero-knowledge proofs

    Get PDF
    Today, digital identity management for individuals is either inconvenient and error-prone or creates undesirable lock-in effects and violates privacy and security expectations. These shortcomings inhibit the digital transformation in general and seem particularly concerning in the context of novel applications such as access control for decentralized autonomous organizations and identification in the Metaverse. Decentralized or self-sovereign identity (SSI) aims to offer a solution to this dilemma by empowering individuals to manage their digital identity through machine-verifiable attestations stored in a "digital wallet" application on their edge devices. However, when presented to a relying party, these attestations typically reveal more attributes than required and allow tracking end users' activities. Several academic works and practical solutions exist to reduce or avoid such excessive information disclosure, from simple selective disclosure to data-minimizing anonymous credentials based on zero-knowledge proofs (ZKPs). We first demonstrate that the SSI solutions that are currently built with anonymous credentials still lack essential features such as scalable revocation, certificate chaining, and integration with secure elements. We then argue that general-purpose ZKPs in the form of zk-SNARKs can appropriately address these pressing challenges. We describe our implementation and conduct performance tests on different edge devices to illustrate that the performance of zk-SNARK-based anonymous credentials is already practical. We also discuss further advantages that general-purpose ZKPs can easily provide for digital wallets, for instance, to create "designated verifier presentations" that facilitate new design options for digital identity infrastructures that previously were not accessible because of the threat of man-in-the-middle attacks

    Adaptive trust and reputation system as a security service in group communications

    Get PDF
    Group communications has been facilitating many emerging applications which require packet delivery from one or more sender(s) to multiple receivers. Owing to the multicasting and broadcasting nature, group communications are susceptible to various kinds of attacks. Though a number of proposals have been reported to secure group communications, provisioning security in group communications remains a critical and challenging issue. This work first presents a survey on recent advances in security requirements and services in group communications in wireless and wired networks, and discusses challenges in designing secure group communications in these networks. Effective security services to secure group communications are then proposed. This dissertation also introduces the taxonomy of security services, which can be applied to secure group communications, and evaluates existing secure group communications schemes. This dissertation work analyzes a number of vulnerabilities against trust and reputation systems, and proposes a threat model to predict attack behaviors. This work also considers scenarios in which multiple attacking agents actively and collaboratively attack the whole network as well as a specific individual node. The behaviors may be related to both performance issues and security issues. Finally, this work extensively examines and substantiates the security of the proposed trust and reputation system. This work next discusses the proposed trust and reputation system for an anonymous network, referred to as the Adaptive Trust-based Anonymous Network (ATAN). The distributed and decentralized network management in ATAN does not require a central authority so that ATAN alleviates the problem of a single point of failure. In ATAN, the trust and reputation system aims to enhance anonymity by establishing a trust and reputation relationship between the source and the forwarding members. The trust and reputation relationship of any two nodes is adaptive to new information learned by these two nodes or recommended from other trust nodes. Therefore, packets are anonymously routed from the \u27trusted\u27 source to the destination through \u27trusted\u27 intermediate nodes, thereby improving anonymity of communications. In the performance analysis, the ratio of the ATAN header and data payload is around 0.1, which is relatively small. This dissertation offers analysis on security services on group communications. It illustrates that these security services are needed to incorporate with each other such that group communications can be secure. Furthermore, the adaptive trust and reputation system is proposed to integrate the concept of trust and reputation into communications. Although deploying the trust and reputation system incurs some overheads in terms of storage spaces, bandwidth and computation cycles, it shows a very promising performance that enhance users\u27 confidence in using group communications, and concludes that the trust and reputation system should be deployed as another layer of security services to protect group communications against malicious adversaries and attacks

    Secure and Authenticated Message Dissemination in Vehicular ad hoc Networks and an Incentive-Based Architecture for Vehicular Cloud

    Get PDF
    Vehicular ad hoc Networks (VANETs) allow vehicles to form a self-organized network. VANETs are likely to be widely deployed in the future, given the interest shown by industry in self-driving cars and satisfying their customers various interests. Problems related to Mobile ad hoc Networks (MANETs) such as routing, security, etc.have been extensively studied. Even though VANETs are special type of MANETs, solutions proposed for MANETs cannot be directly applied to VANETs because all problems related to MANETs have been studied for small networks. Moreover, in MANETs, nodes can move randomly. On the other hand, movement of nodes in VANETs are constrained to roads and the number of nodes in VANETs is large and covers typically large area. The following are the contributions of the thesis. Secure, authenticated, privacy preserving message dissemination in VANETs: When vehicles in VANET observe phenomena such as accidents, icy road condition, etc., they need to disseminate this information to vehicles in appropriate areas so the drivers of those vehicles can take appropriate action. When such messages are disseminated, the authenticity of the vehicles disseminating such messages should be verified while at the same time the anonymity of the vehicles should be preserved. Moreover, to punish the vehicles spreading malicious messages, authorities should be able to trace such messages to their senders when necessary. For this, we present an efficient protocol for the dissemination of authenticated messages. Incentive-based architecture for vehicular cloud: Due to the advantages such as exibility and availability, interest in cloud computing has gained lot of attention in recent years. Allowing vehicles in VANETs to store the collected information in the cloud would facilitate other vehicles to retrieve this information when they need. In this thesis, we present a secure incentive-based architecture for vehicular cloud. Our architecture allows vehicles to collect and store information in the cloud; it also provides a mechanism for rewarding vehicles that contributing to the cloud. Privacy preserving message dissemination in VANETs: Sometimes, it is sufficient to ensure the anonymity of the vehicles disseminating messages in VANETs. We present a privacy preserving message dissemination protocol for VANETs
    • …
    corecore