3,473 research outputs found

    Ultrafast Ultrasound Imaging

    Get PDF
    Among medical imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), ultrasound imaging stands out due to its temporal resolution. Owing to the nature of medical ultrasound imaging, it has been used for not only observation of the morphology of living organs but also functional imaging, such as blood flow imaging and evaluation of the cardiac function. Ultrafast ultrasound imaging, which has recently become widely available, significantly increases the opportunities for medical functional imaging. Ultrafast ultrasound imaging typically enables imaging frame-rates of up to ten thousand frames per second (fps). Due to the extremely high temporal resolution, this enables visualization of rapid dynamic responses of biological tissues, which cannot be observed and analyzed by conventional ultrasound imaging. This Special Issue includes various studies of improvements to the performance of ultrafast ultrasoun

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF

    Methods and Instrumentation for Non-Invasive Assessment of the Cardiovascular Condition

    Get PDF
    Tese de doutoramento em Física (Pré-Bolonha), Especialidade de Física Tecnológica, apresentada à Faculdade de Ciências e Tecnologia da Universidade de CoimbraAs doenças cardiovasculares (DCVs) são a principal causa de morte a nível mundial e largamente responsáveis pelos custos crescentes nos sistemas de saúde. Nos últimos anos, a comunidade médica tem vindo a demonstrar um grande interesse na avaliação da rigidez arterial local, pressão arterial central e na análise da onda de pressão, devido aos seus valores preditivos no desenvolvimento deste tipo de patologias. Apesar da sua relevância, estes parâmetros hemodinâmicos permanecem particularmente difíceis de medir na prática clínica, já que a maioria dos dispositivos disponíveis exigem elevados conhecimentos técnicos (introduzindo a dependência de um operador), tecnologias dispendiosas ou apresentam abordagens de análise ineficientes. Este trabalho de investigação encontra assim a sua motivação no potencial impacto que instrumentação não-invasiva, exata e de fácil utilização pode ter na monitorização da condição hemodinâmica e no diagnóstico precoce e acompanhamento de DCVs. Neste contexto, uma nova geração de protótipos baseados na combinação de diferentes tipos de sensores eletromecânicos, bem como um conjunto de algoritmos de processamento de sinal adequados à extração de múltiplos parâmetros hemodinâmicos foram desenvolvidos. Dependendo do marcador de risco cardiovascular a ser avaliado, dois grandes grupos de dispositivos foram projetados. O primeiro grupo, focado na avaliação da rigidez arterial local, explorou uma configuração dupla inovadora com dois sensores acústicos ou piezoelétricos (PZs) para a medição da velocidade da onda de pulso (VOP) e outros índices temporais relevantes, num curto segmento da artéria carótida. O outro grupo, centrado na avaliação contínua da pressão arterial sanguínea (PAS) e onda de pressão arterial (OPA), também na artéria carótida, usou uma unidade vibrador-acelerómetro montada num mesmo suporte que permitiu ao acelerómetro detetar as vibrações produzidas, atenuadas e moduladas em amplitude quando em contacto mecânico com a parede do vaso. Os protótipos desenvolvidos foram extensivamente caracterizados em sistemas de bancada de teste, desenvolvidos para este efeito e capazes de reproduzir a variabilidade de uma ampla gama de situações clinicamente relevantes, bem como em condições in vivo. Relativamente à avaliação da rigidez arterial local, a primeira e segunda gerações de protótipos desenvolvidos apresentaram boa exatidão nos ensaios de resolução temporal realizados em tubos elásticos de bancadas de teste. O algoritmo de correlação cruzada exibiu a capacidade de medir VOPs altas (≈ 19 ms-1 e 14 ms-1) com erros relativos e coeficientes de variação inferiores a 10 % para os diferentes protótipos. Os sinais adquiridos provaram ser robustos e repetíveis, não sofrendo efeitos de crosstalk. Os resultados obtidos no estudo de validação pré-clínica em vinte indivíduos saudáveis com a segunda geração de protótipos foram ainda bastante satisfatórios. As VOPs carotídeas médias obtidas apresentaram uma correlação linear e forte entre si, estando os resultados próximos dos valores obtidos noutros estudos de referência. Além disso, a capacidade de reproduzir perfis de onda pressão distintos usando as sondas PZs foi também mostrada, quer utilizando o processo de desconvolução quer um circuito eletrónico integrador dedicado. No que diz respeito à avaliação da PAS e OPA, o processo de desmodulação produziu excelentes resultados na recuperação da morfologia da onda de pressão em condições de bancada de teste e in vivo. Para os dois protótipos desenvolvidos, várias formas de onda foram extraídas, com exatidão, das portadoras moduladas de aceleração, corrente ou potência elétricas, usando os algoritmos de deteção do envelope e do produto. Na bancada de teste foi possível reproduzir a forma de onda de pressão para posições de aplanação do tubo elástico sucessivamente mais elevadas com um erro quadrático médio de 2.4 ± 0.51 %, quando considerado o melhor método de extração. A eficácia de um novo método de calibração focado na utilização de curvas empíricas que convertem aceleração em pressão foi também demonstrado. Através da conservação da amplitude da portadora de aceleração, foi possível determinar os valores de pressão máximo, mínimo, médio e de pulso com erros relativos inferiores a 10 % em condições de bancada. Além disso, as diferenças de pressão entre o último protótipo desenvolvido e o sistema de referência foram, em média, ≤ 5 ± 8 mmHg, satisfazendo os critérios de exatidão de sistemas de medição de PAS clinicamente validados. Embora estudos de validação clínica sejam ainda necessários, os resultados globais obtidos neste trabalho para os dois principais tipos de protótipos dão bons indicadores quanto à sua utilização como alternativas válidas aos sistemas atualmente disponíveis, tanto em ambientes clínico quanto de investigação.Cardiovascular diseases (CVDs) are the leading cause of death worldwide and largely responsible for the ever increasing costs in healthcare systems. In the last few years, the medical community has demonstrated a great interest in local arterial stiffness, central blood pressure assessment and pressure waveform analysis, due to their predictive values in the development of this type of pathologies. Despite their significance, these hemodynamic parameters remain particularly challenging to measure in standard clinical practice since most available devices require high technical expertise (introducing operator dependence), burdensome technologies and/or present ineffective analysis approaches. This research work finds its motivation in the potential impact that non-invasive, accurate and easy-to-use instrumentation could have on the monitoring of hemodynamic condition and on the diagnosis and control of early stages of CVDs. In this context, a new generation of prototypes based on the combination of different types of electromechanical sensors, along with a set of signal processing algorithms suited to the extraction of multiple hemodynamic parameters were developed. Two major groups of devices were designed depending on the cardiovascular risk marker to be assessed. The first group, focused on local arterial stiffness evaluation, explored an innovative double headed probe configuration of acoustic or piezoelectric (PZ) sensors for the measurement of pulse wave velocity (PWV) and other relevant time-based indices, in a short segment of the carotid artery. The other main group, centered on the continuous assessment of arterial blood pressure (ABP) and arterial pressure waveform (APW), also at the carotid artery, used a vibrator-accelerometer unit mounted in a common support that enabled the accelerometer to sense the produced vibrations, attenuated and modulated in amplitude when in mechanical contact with the vessel wall. The developed prototypes were extensively characterized in test bench systems, purposely built and capable of reproducing the variability of a wide range of clinically relevant situations, as well as in in vivo conditions. Regarding local arterial stiffness evaluation, the first and second generations of developed prototypes presented good accuracy in time resolution experiments on elastic tubes at the test bench. Cross-correlation algorithm exhibited the capability of measuring high PWVs (≈ 19 ms-1 and 14 ms-1) with relative errors and coefficients of variation lower than 10 % for the different prototypes. The acquired signals proved to be robust and repeatable, not suffering from crosstalk effect. The results obtained in a pre-clinical validation trial of twenty healthy subjects with the second generation of prototypes were very satisfactory, demonstrating that the mean carotid PWVs obtained were linearly and strongly correlated and were in agreement with other reference studies. Additionally, the ability to reproduce distinct wave pressure profiles using the PZs probes was also shown, either using the demodulation algorithm-based process or a special circuit for electronic integration. Concerning APW and ABP assessment, the demodulation process yielded excellent results in recovering the morphology of pressure wave in test bench and in in vivo conditions. For the two developed prototypes, several waveforms were accurately extracted from the acceleration, current or power modulated carriers using the envelope and product detector algorithms. It was possible to reproduce the pressure waveform for successive higher applanation positions of the elastic tube at the test bench with a root mean square error of 2.4 ± 0.51 %, when considering the best extracting method. The effectiveness of a novel calibration method focused on the use of empirical curves which convert acceleration into pressure was also demonstrated. Through the conservation of the acceleration carrier amplitude, it was possible to determine the maximum, minimum, mean and pulse pressure values with relative errors lower than 10 % in bench conditions. Also, the mean pressure differences between the latest prototype and the reference system were, on average, ≤ 5 ± 8 mmHg, satisfying the accuracy criteria of clinically validated ABP devices. Although clinical validation studies are still required, the global results obtained in this work for the two major types of prototypes provide great prospects regarding their use as valid alternatives to currently available systems, both in clinical and research settings

    A biomechanical analysis of shear wave elastography in pediatric heart models

    Get PDF
    Early detection of cardiac disease in children is essential to optimize treatment and follow-up, but also to reduce its associated mortality and morbidity. Various cardiac imaging modalities are available for the cardiologist, mainly providing information on tissue morphology and structure with high temporal and/or spatial resolution. However, none of these imaging methods is able to directly measure stresses or intrinsic mechanical properties of the heart, which are potential key diagnostic markers to distinguish between normal and abnormal physiology. This thesis investigates the potential of a relatively new ultrasound-based technique, called shear wave elastography (SWE), to non-invasively measure myocardial stiffness. The technique generates an internal perturbation inside the tissue of interest, and consequently measures the propagation of the acoustically excited shear wave, of which the propagation speed is directly related to tissue stiffness. This allows SWE to identify regions with higher stiffness, which is associated with pathology. SWE has shown to be successful in detecting tumors in breast tissue and fibrosis in liver tissue, however application of SWE to the heart is more challenging due to the complex mechanical and structural properties of the heart. This thesis provides insights into the acoustically excited shear wave physics in the myocardium by using computer simulations in combination with experiments. Furthermore, these models also allow to assess the performance of currently used SWE-based material characterization algorithms

    Towards ultrasound full-waveform inversion in medical imaging

    Get PDF
    Ultrasound imaging is a front-line clinical modality with a wide range of applications. However, there are limitations to conventional methods for some medical imaging problems, including the imaging of the intact brain. The goal of this thesis is to explore and build on recent technological advances in ultrasonics and related areas such as geophysics, including the ultrasound data parallel acquisition hardware, advanced computational techniques for field modelling and for inverse problem solving. With the significant increase in the computational power now available, a particular focus will be put on exploring the potential of full-waveform inversion (FWI), a high-resolution image reconstruction technique which has shown significant success in seismic exploration, for medical imaging applications. In this thesis a range of technologies and systems have been developed in order to improve ultrasound imaging by taking advantage of these recent advances. In the first part of this thesis the application of dual frequency ultrasound for contrast enhanced imaging of neurovasculature in the mouse brain is investigated. Here we demonstrated a significant improvement in the contrast-to-tissue ratio that could be achieved by using a multi-probe, dual frequency imaging system when compared to a conventional approach using a single high frequency probe. However, without a sufficiently accurate calibration method to determine the positioning of these probes the image resolution was found to be significantly reduced. To mitigate the impact of these positioning errors, a second study was carried out to develop a sophisticated dual probe ultrasound tomography acquisition system with a robust methodology for the calibration of transducer positions. This led to a greater focus on the development of ultrasound tomography applications in medical imaging using FWI. A 2.5D brain phantom was designed that consisted of a soft tissue brain model surrounded by a hard skull mimicking material to simulate a transcranial imaging problem. This was used to demonstrate for the first time, as far as we are aware, the experimental feasibility of imaging the brain through skull using FWI. Furthermore, to address the lack of broadband sensors available for medical FWI reconstruction applications, a deep learning neural network was proposed for the bandwidth extension of observed narrowband data. A demonstration of this proposed technique was then carried out by improving the FWI image reconstruction of experimentally acquired breast phantom imaging data. Finally, the FWI imaging method was expanded for3D neuroimaging applications and an in silico feasibility of reconstructing the mouse brain with commercial transducers is demonstrated.Open Acces

    Characterization of carotid artery plaques using noninvasive vascular ultrasound elastography

    Full text link
    L'athérosclérose est une maladie vasculaire complexe qui affecte la paroi des artères (par l'épaississement) et les lumières (par la formation de plaques). La rupture d'une plaque de l'artère carotide peut également provoquer un accident vasculaire cérébral ischémique et des complications. Bien que plusieurs modalités d'imagerie médicale soient actuellement utilisées pour évaluer la stabilité d'une plaque, elles présentent des limitations telles que l'irradiation, les propriétés invasives, une faible disponibilité clinique et un coût élevé. L'échographie est une méthode d'imagerie sûre qui permet une analyse en temps réel pour l'évaluation des tissus biologiques. Il est intéressant et prometteur d’appliquer une échographie vasculaire pour le dépistage et le diagnostic précoces des plaques d’artère carotide. Cependant, les ultrasons vasculaires actuels identifient uniquement la morphologie d'une plaque en termes de luminosité d'écho ou l’impact de cette plaque sur les caractéristiques de l’écoulement sanguin, ce qui peut ne pas être suffisant pour diagnostiquer l’importance de la plaque. La technique d’élastographie vasculaire non-intrusive (« noninvasive vascular elastography (NIVE) ») a montré le potentiel de détermination de la stabilité d'une plaque. NIVE peut déterminer le champ de déformation de la paroi vasculaire en mouvement d’une artère carotide provoqué par la pulsation cardiaque naturelle. En raison des différences de module de Young entre les différents tissus des vaisseaux, différents composants d’une plaque devraient présenter différentes déformations, caractérisant ainsi la stabilité de la plaque. Actuellement, les performances et l’efficacité numérique sous-optimales limitent l’acceptation clinique de NIVE en tant que méthode rapide et efficace pour le diagnostic précoce des plaques vulnérables. Par conséquent, il est nécessaire de développer NIVE en tant qu’outil d’imagerie non invasif, rapide et économique afin de mieux caractériser la vulnérabilité liée à la plaque. La procédure à suivre pour effectuer l’analyse NIVE consiste en des étapes de formation et de post-traitement d’images. Cette thèse vise à améliorer systématiquement la précision de ces deux aspects de NIVE afin de faciliter la prédiction de la vulnérabilité de la plaque carotidienne. Le premier effort de cette thèse a été dédié à la formation d'images (Chapitre 5). L'imagerie par oscillations transversales a été introduite dans NIVE. Les performances de l’imagerie par oscillations transversales couplées à deux estimateurs de contrainte fondés sur un modèle de déformation fine, soit l’ « affine phase-based estimator (APBE) » et le « Lagrangian speckle model estimator (LSME) », ont été évaluées. Pour toutes les études de simulation et in vitro de ce travail, le LSME sans imagerie par oscillation transversale a surperformé par rapport à l'APBE avec imagerie par oscillations transversales. Néanmoins, des estimations de contrainte principales comparables ou meilleures pourraient être obtenues avec le LSME en utilisant une imagerie par oscillations transversales dans le cas de structures tissulaires complexes et hétérogènes. Lors de l'acquisition de signaux ultrasonores pour la formation d'images, des mouvements hors du plan perpendiculaire au plan de balayage bidimensionnel (2-D) existent. Le deuxième objectif de cette thèse était d'évaluer l'influence des mouvements hors plan sur les performances du NIVE 2-D (Chapitre 6). À cette fin, nous avons conçu un dispositif expérimental in vitro permettant de simuler des mouvements hors plan de 1 mm, 2 mm et 3 mm. Les résultats in vitro ont montré plus d'artefacts d'estimation de contrainte pour le LSME avec des amplitudes croissantes de mouvements hors du plan principal de l’image. Malgré tout, nous avons néanmoins obtenu des estimations de déformations robustes avec un mouvement hors plan de 2.0 mm (coefficients de corrélation supérieurs à 0.85). Pour un jeu de données cliniques de 18 participants présentant une sténose de l'artère carotide, nous avons proposé d'utiliser deux jeux de données d'analyses sur la même plaque carotidienne, soit des images transversales et longitudinales, afin de déduire les mouvements hors plan (qui se sont avérés de 0.25 mm à 1.04 mm). Les résultats cliniques ont montré que les estimations de déformations restaient reproductibles pour toutes les amplitudes de mouvement, puisque les coefficients de corrélation inter-images étaient supérieurs à 0.70 et que les corrélations croisées normalisées entre les images radiofréquences étaient supérieures à 0.93, ce qui a permis de démontrer une plus grande confiance lors de l'analyse de jeu de données cliniques de plaques carotides à l'aide du LSME. Enfin, en ce qui concerne le post-traitement des images, les algorithmes NIVE doivent estimer les déformations des parois des vaisseaux à partir d’images reconstituées dans le but d’identifier les tissus mous et durs. Ainsi, le dernier objectif de cette thèse était de développer un algorithme d'estimation de contrainte avec une résolution de la taille d’un pixel ainsi qu'une efficacité de calcul élevée pour l'amélioration de la précision de NIVE (Chapitre 7). Nous avons proposé un estimateur de déformation de modèle fragmenté (SMSE) avec lequel le champ de déformation dense est paramétré avec des descriptions de transformées en cosinus discret, générant ainsi des composantes de déformations affines (déformations axiales et latérales et en cisaillement) sans opération mathématique de dérivées. En comparant avec le LSME, le SMSE a réduit les erreurs d'estimation lors des tests de simulations, ainsi que pour les mesures in vitro et in vivo. De plus, la faible mise en oeuvre de la méthode SMSE réduit de 4 à 25 fois le temps de traitement par rapport à la méthode LSME pour les simulations, les études in vitro et in vivo, ce qui pourrait permettre une implémentation possible de NIVE en temps réel.Atherosclerosis is a complex vascular disease that affects artery walls (by thickening) and lumens (by plaque formation). The rupture of a carotid artery plaque may also induce ischemic stroke and complications. Despite the use of several medical imaging modalities to evaluate the stability of a plaque, they present limitations such as irradiation, invasive property, low clinical availability and high cost. Ultrasound is a safe imaging method with a real time capability for assessment of biological tissues. It is clinically used for early screening and diagnosis of carotid artery plaques. However, current vascular ultrasound technologies only identify the morphology of a plaque in terms of echo brightness or the impact of the vessel narrowing on flow properties, which may not be sufficient for optimum diagnosis. Noninvasive vascular elastography (NIVE) has been shown of interest for determining the stability of a plaque. Specifically, NIVE can determine the strain field of the moving vessel wall of a carotid artery caused by the natural cardiac pulsation. Due to Young’s modulus differences among different vessel tissues, different components of a plaque can be detected as they present different strains thereby potentially helping in characterizing the plaque stability. Currently, sub-optimum performance and computational efficiency limit the clinical acceptance of NIVE as a fast and efficient method for the early diagnosis of vulnerable plaques. Therefore, there is a need to further develop NIVE as a non-invasive, fast and low computational cost imaging tool to better characterize the plaque vulnerability. The procedure to perform NIVE analysis consists in image formation and image post-processing steps. This thesis aimed to systematically improve the accuracy of these two aspects of NIVE to facilitate predicting carotid plaque vulnerability. The first effort of this thesis has been targeted on improving the image formation (Chapter 5). Transverse oscillation beamforming was introduced into NIVE. The performance of transverse oscillation imaging coupled with two model-based strain estimators, the affine phase-based estimator (APBE) and the Lagrangian speckle model estimator (LSME), were evaluated. For all simulations and in vitro studies, the LSME without transverse oscillation imaging outperformed the APBE with transverse oscillation imaging. Nonetheless, comparable or better principal strain estimates could be obtained with the LSME using transverse oscillation imaging in the case of complex and heterogeneous tissue structures. During the acquisition of ultrasound signals for image formation, out-of-plane motions which are perpendicular to the two-dimensional (2-D) scan plane are existing. The second objective of this thesis was to evaluate the influence of out-of-plane motions on the performance of 2-D NIVE (Chapter 6). For this purpose, we designed an in vitro experimental setup to simulate out-of-plane motions of 1 mm, 2 mm and 3 mm. The in vitro results showed more strain estimation artifacts for the LSME with increasing magnitudes of out-of-plane motions. Even so, robust strain estimations were nevertheless obtained with 2.0 mm out-of-plane motion (correlation coefficients higher than 0.85). For a clinical dataset of 18 participants with carotid artery stenosis, we proposed to use two datasets of scans on the same carotid plaque, one cross-sectional and the other in a longitudinal view, to deduce the out-of-plane motions (estimated to be ranging from 0.25 mm to 1.04 mm). Clinical results showed that strain estimations remained reproducible for all motion magnitudes since inter-frame correlation coefficients were higher than 0.70, and normalized cross-correlations between radiofrequency images were above 0.93, which indicated that confident motion estimations can be obtained when analyzing clinical dataset of carotid plaques using the LSME. Finally, regarding the image post-processing component of NIVE algorithms to estimate strains of vessel walls from reconstructed images with the objective of identifying soft and hard tissues, we developed a strain estimation method with a pixel-wise resolution as well as a high computation efficiency for improving NIVE (Chapter 7). We proposed a sparse model strain estimator (SMSE) for which the dense strain field is parameterized with Discrete Cosine Transform descriptions, thereby deriving affine strain components (axial and lateral strains and shears) without mathematical derivative operations. Compared with the LSME, the SMSE reduced estimation errors in simulations, in vitro and in vivo tests. Moreover, the sparse implementation of the SMSE reduced the processing time by a factor of 4 to 25 compared with the LSME based on simulations, in vitro and in vivo results, which is suggesting a possible implementation of NIVE in real time

    Ultraharmonic ivus imaging of mircovascularization

    Get PDF
    • …
    corecore