648 research outputs found

    Applying Machine Learning to Advance Cyber Security: Network Based Intrusion Detection Systems

    Get PDF
    Many new devices, such as phones and tablets as well as traditional computer systems, rely on wireless connections to the Internet and are susceptible to attacks. Two important types of attacks are the use of malware and exploiting Internet protocol vulnerabilities in devices and network systems. These attacks form a threat on many levels and therefore any approach to dealing with these nefarious attacks will take several methods to counter. In this research, we utilize machine learning to detect and classify malware, visualize, detect and classify worms, as well as detect deauthentication attacks, a form of Denial of Service (DoS). This work also includes two prevention mechanisms for DoS attacks, namely a one- time password (OTP) and through the use of machine learning. Furthermore, we focus on an exploit of the widely used IEEE 802.11 protocol for wireless local area networks (WLANs). The work proposed here presents a threefold approach for intrusion detection to remedy the effects of malware and an Internet protocol exploit employing machine learning as a primary tool. We conclude with a comparison of dimensionality reduction methods to a deep learning classifier to demonstrate the effectiveness of these methods without compromising the accuracy of classification

    A Multi Agent System for Flow-Based Intrusion Detection

    Get PDF
    The detection and elimination of threats to cyber security is essential for system functionality, protection of valuable information, and preventing costly destruction of assets. This thesis presents a Mobile Multi-Agent Flow-Based IDS called MFIREv3 that provides network anomaly detection of intrusions and automated defense. This version of the MFIRE system includes the development and testing of a Multi-Objective Evolutionary Algorithm (MOEA) for feature selection that provides agents with the optimal set of features for classifying the state of the network. Feature selection provides separable data points for the selected attacks: Worm, Distributed Denial of Service, Man-in-the-Middle, Scan, and Trojan. This investigation develops three techniques of self-organization for multiple distributed agents in an intrusion detection system: Reputation, Stochastic, and Maximum Cover. These three movement models are tested for effectiveness in locating good agent vantage points within the network to classify the state of the network. MFIREv3 also introduces the design of defensive measures to limit the effects of network attacks. Defensive measures included in this research are rate-limiting and elimination of infected nodes. The results of this research provide an optimistic outlook for flow-based multi-agent systems for cyber security. The impact of this research illustrates how feature selection in cooperation with movement models for multi agent systems provides excellent attack detection and classification

    Flexible and Robust k-Zero Day Safety Network Security Metrics to Measure the Risk on Different Vulnerabilities

    Get PDF
    Today's computer systems face sophisticated attackers who combine multiple vulnerabilities to penetrate networks with devastating impact. The overall security of a network cannot be determined by simply counting the number of vulnerabilities. In fact, the security risk of unknown vulnerabilities has been considered as something immeasurable due to the less predictable nature of software flaws. This causes a major difficulty to security metrics, because a more secure configuration would be of little value if it were equally susceptible to zero-day attacks. In this paper, instead of just counting how much such vulnerability would be required for compromising network assets we can also attempting to rank unknown vulnerabilities. We propose a Flexible and Robust k-Zero Day Safety security model to rank the zero-day attacks by using collaborative filtering technique to different (types of) zero-day vulnerabilities and novel security metrics for uncertain and dynamic data. DOI: 10.17762/ijritcc2321-8169.15073

    Holistic Network Defense: Fusing Host and Network Features for Attack Classification

    Get PDF
    This work presents a hybrid network-host monitoring strategy, which fuses data from both the network and the host to recognize malware infections. This work focuses on three categories: Normal, Scanning, and Infected. The network-host sensor fusion is accomplished by extracting 248 features from network traffic using the Fullstats Network Feature generator and from the host using text mining, looking at the frequency of the 500 most common strings and analyzing them as word vectors. Improvements to detection performance are made by synergistically fusing network features obtained from IP packet flows and host features, obtained from text mining port, processor, logon information among others. In addition, the work compares three different machine learning algorithms and updates the script required to obtain network features. Hybrid method results outperformed host only classification by 31.7% and network only classification by 25%. The new approach also reduces the number of alerts while remaining accurate compared with the commercial IDS SNORT. These results make it such that even the most typical users could understand alert classification messages

    Security in Data Mining- A Comprehensive Survey

    Get PDF
    Data mining techniques, while allowing the individuals to extract hidden knowledge on one hand, introduce a number of privacy threats on the other hand. In this paper, we study some of these issues along with a detailed discussion on the applications of various data mining techniques for providing security. An efficient classification technique when used properly, would allow an user to differentiate between a phishing website and a normal website, to classify the users as normal users and criminals based on their activities on Social networks (Crime Profiling) and to prevent users from executing malicious codes by labelling them as malicious. The most important applications of Data mining is the detection of intrusions, where different Data mining techniques can be applied to effectively detect an intrusion and report in real time so that necessary actions are taken to thwart the attempts of the intruder. Privacy Preservation, Outlier Detection, Anomaly Detection and PhishingWebsite Classification are discussed in this paper

    A framework for cost-sensitive automated selection of intrusion response

    Get PDF
    In recent years, cost-sensitive intrusion response has gained significant interest due to its emphasis on the balance between potential damage incurred by the intrusion and cost of the response. However, one of the challenges in applying this approach is defining a consistent and adaptable measurement framework to evaluate the expected benefit of a response. In this thesis we present a model and framework for the cost-sensitive assessment and selection of intrusion response. Specifically, we introduce a set of measurements that characterize the potential costs associated with the intrusion handling process, and propose an intrusion response evaluation method with respect to the risk of potential intrusion damage, the effectiveness of the response action and the response cost for a system. The proposed framework has the important quality of abstracting the system security policy from the response selection mechanism, permitting policy adjustments to be made without changes to the model. We provide an implementation of the proposed solution as an IDS-independent plugin tool, and demonstrate its advantages over traditional static response systems and an existing dynamic response system

    A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    Get PDF
    The rising sophistication of cyber threats as well as the improvement of physical computer network properties present increasing challenges to contemporary Intrusion Detection (ID) techniques. To respond to these challenges, a multi agent system (MAS) coupled with flow-based ID techniques may effectively complement traditional ID systems. This paper develops: 1) a scalable software architecture for a new, self-organized, multi agent, flow-based ID system; and 2) a network simulation environment suitable for evaluating implementations of this MAS architecture and for other research purposes. Self-organization is achieved via 1) a reputation system that influences agent mobility in the search for effective vantage points in the network; and 2) multi objective evolutionary algorithms that seek effective operational parameter values. This paper illustrates, through quantitative and qualitative evaluation, 1) the conditions for which the reputation system provides a significant benefit; and 2) essential functionality of a complex network simulation environment supporting a broad range of malicious activity scenarios. These results establish an optimistic outlook for further research in flow-based multi agent systems for ID in computer networks
    • …
    corecore