4,265 research outputs found

    Targeting Intracellular Calcium Stores Alleviates Neurological Morbidities in a DFP-Based Rat Model of Gulf War Illness

    Get PDF
    Gulf War Illness (GWI) is a chronic multi-symptom disorder afflicting the veterans of the First Gulf War, and includes neurological symptoms characterized by depression and memory deficits. Chronic exposure to organophosphates (OP) is considered a leading cause for GWI, yet its pathobiology is not fully understood. We recently observed chronic elevations in neuronal Ca2+ levels ([Ca2+]i) in an OP- diisopropyl fluorophosphate (DFP) based rat model for GWI. This study was aimed at identifying mechanisms underlying elevated [Ca2+]i in this DFP model and investigating whether their therapeutic targeting could improve GWI-like neurological morbidities. Male Sprague-Dawley rats (9-wks) were exposed to DFP (0.5 mg/kg, s.c, 1x-daily for 5-d) and at 3-mos post DFP exposure, behavior was assessed and rats were euthanized for protein estimations and ratiometric Fura-2 [Ca2+]i estimations in acutely dissociated hippocampal neurons. In DFP rats, a sustained elevation in intracellular Ca2+ levels occurred, and pharmacological blockade of Ca2+-induced Ca2+-release mechanisms significantly lowered elevated [Ca2+]i in DFP neurons. Significant reductions in the protein levels of the ryanodine receptor (RyR) stabilizing protein Calstabin2 were also noted. Such a post-translational modification would render RyR leaky resulting in sustained DFP [Ca2+]i elevations. Antagonism of RyR with levetiracetam significantly lower elevated [Ca2+]i in DFP neurons and improved GWI-like behavioral symptoms. Since Ca2+ is a major second messenger molecule, such chronic increases in its levels could underlie pathological synaptic plasticity that expresses itself as GWI morbidities. Our studies show that treatment with drugs targeted at blocking intracellular Ca2+ release could be effective therapies for GWI neurological morbidities

    Chronic behavioral and cognitive deficits in a rat survival model of paraoxon toxicity

    Get PDF
    Organophosphate (OP) compounds, including paraoxon (POX), are similar to nerve agents such as sarin. There is a growing concern that OP agents could be weaponized to cause mass civilian causalities. We have developed a rodent survival model of POX toxicity that is being used to evaluate chronic morbidity and to screen for medical countermeasures against severe OP exposure. It is well known that the survivors of nerve gas and chronic OP exposure exhibit neurobehavioral deficits such as mood changes, depression, and memory impairments. In this study we investigated whether animals surviving severe POX exposure exhibited long-term neurological impairments. POX exposure produced overt signs of cholinergic toxicity. Rats were rescued using an optimized atropine, 2-PAM and diazepam therapy. Surviving rats were studied using established behavioral assays for identifying symptoms of depression and memory impairment 3-months after POX exposure. In the forced swim test, POX rats exhibited increased immobility time indicative of a despair-like state. In the sucrose preference test, POX rats consumed significantly less sucrose water indicating anhedonia-like condition. POX rats also displayed increased anxiety as characterized by significantly lower performance in the open arm of the elevated plus maze. Further, when tested with a novel object recognition paradigm, POX rats exhibited a negative discrimination ratio indicative of impaired recognition memory. The results indicate that this model of survival from severe POX exposure can be employed to study some of the molecular bases for OP-induced chronic behavioral and cognitive comorbidities and develop therapies for their treatment

    Repeated low-dose organophosphate DFP exposure leads to the development of depression and cognitive impairment in a rat model of Gulf War Illness

    Get PDF
    Approximately 175,000 to 250,000 of the returning veterans from the 1991 Persian Gulf War exhibit chronic multi-symptom illnesses that includes neurologic co-morbidities such as depression, anxiety and cognitive impairments. Amongst a host of causative factors, exposure to low levels of the nerve agent Sarin has been strongly implicated for expression of Gulf War Illness (GWI). Nerve agents similar to pesticides are organophosphate (OP) compounds. There is evidence from civilian population that exposure to OPs such as in agricultural workers and nerve agents such as the survivors and first-responders of the Tokyo subway Sarin gas attack suffer from chronic neurological problems similar to GWI symptoms. Given this unique chemical profile, OPs are ideal to study the effects of nerve agents and develop models of GWI in civilian laboratories. In this study, we used repeated low-dose exposure to OP agent diisopropyl fluorophosphate (DFP) over a 5-day period to approximate the duration and level of Sarin exposure during the Persian Gulf War. We tested the rats at 3-months post DFP exposure. Using a battery of behavioral assays, we observed the presence of symptoms of chronic depression, anxiety and memory problems as characterized by increased immobility time in the Forced Swim Test, anhedonia in the Sucrose Preference Test, anxiety in the Elevated Plus Maze, and spatial memory impairments in the Object Location Test, respectively. Chronic low dose DFP exposure was also associated with hippocampal neuronal damage as characterized by the presence of Fluoro-Jade staining. Given that OP exposure is considered a leading cause of GWI related morbidities, this animal model will be ideally suited to study underlying molecular mechanisms for the expression of GWI neurological symptoms and identify drugs for the effective treatment of GWIs

    Sex differences in behavioral traits related with high sensitivity to the reinforcing effects of cocaine

    Get PDF
    Cocaine is the most prevalent illegal stimulant drug in Europe among the adult population. Its abuse is characterized by a faster substance abuse disorder (SUD) development than other drugs, with high vulnerability to relapse. However, there does not exist an effective treatment for cocaine dependence. Sex differences have been reported in psychological disorders including SUD. For this reason, it is essential to identify risk factors that predict susceptibility or resilience to cocaine addiction for the development of effective prevention strategies considering sex differences. In the present study, the main objective was to determine more sensitive phenotypes to the conditioned reinforcing effects of cocaine in both sexes. Anxiety-like behavior and the locomotor response to novelty were evaluated in the elevated plus maze, and despair in the tail suspension test, as well as vulnerability traits linked with a high sensitivity to the reinforcing effects of a subthreshold dose of cocaine (1 mg/kg) in the conditioned place preference (CPP) paradigm in male and female mice. Our results indicated that only female mice with high anxiety, low locomotor response to novelty or low despair levels acquired CPP induced by cocaine, while male mice with low anxiety, high locomotor response to novelty or high despair levels presented a higher susceptibility to the rewarding effects of cocaine than others. These sex differences in the results reveal an opposite pattern in males and females on the relationship between anxiety- and depressive-like behaviors and cocaine vulnerability, demonstrating the need to include female mice in preclinical studies

    Do Zebrafish Exhibit a Placebo Response? Fluoxetine Conditioning in Chronically Stressed Adult Zebrafish (\u3ci\u3eDanio rerio\u3c/i\u3e)

    Get PDF
    Placebo responses are a widely observed phenomenon in humans and animals alike. In humans, placebo responses are largely attributed to expectancy processes, and conditioning (Stewart-Williams, & Podd, 2004). In the clinical setting, the placebo response is very useful as it has the power to improve physical and/or psychological states, without the need for treatment with a higher drug dose. In clinical trials however, researchers must control for potential placebo effects. Still, despite the experimental control, placebo responses are widely observed during phase 2 and phase 3 clinical trials, resulting in a weak drug effect. In the effort to improve the efficiency of drug discovery and development, it is necessary to better understand the placebo response. The current study tested a protocol that examined the existence of placebo responses in chronically stressed adult zebrafish. Over a 30 day period, animals were subjected to an unpredictable chronic mild stress (UCMS) procedure (Piato et al., 2011). Concurrent with the UCMS protocol, stressed animals were conditioned to receive antidepressant (fluoxetine) treatment in a visually distinct arena to protect against stress in the zebrafish. The conditioned placebo response was then evaluated in the novel tank test following the placebo session (treatment with system water). Exposure to the placebo dose produced a slight anxiety-like response and this compensatory response has been observed in different domains of drug conditioning, supporting the conditioning model. The results of this study contribute to our current understanding of the placebo responses in animal models, specifically in a stressed animal model

    Transcriptional Effects of Glucocorticoid Receptors in the Dentate Gyrus Increase Anxiety-Related Behaviors

    Get PDF
    The Glucocorticoid Receptor (GR) is a transcription factor ubiquitously expressed in the brain. Activation of brain GRs by high levels of glucocorticoid (GC) hormones modifies a large variety of physiological and pathological-related behaviors. Unfortunately the specific cellular targets of GR-mediated behavioral effects of GC are still largely unknown. To address this issue, we generated a mutated form of the GR called ΔGR. ΔGR is a constitutively transcriptionally active form of the GR that is localized in the nuclei and activates transcription without binding to glucocorticoids. Using the tetracycline-regulated system (Tet-OFF), we developed an inducible transgenic approach that allows the expression of the ΔGR in specific brain areas. We focused our study on a mouse line that expressed ΔGR almost selectively in the glutamatergic neurons of the dentate gyrus (DG) of the hippocampus. This restricted expression of the ΔGR increased anxiety-related behaviors without affecting other behaviors that could indirectly influence performance in anxiety-related tests. This behavioral phenotype was also associated with an up-regulation of the MAPK signaling pathway and Egr-1 protein in the DG. These findings identify glutamatergic neurons in the DG as one of the cellular substrate of stress-related pathologies

    Quantitative traits for the tail suspension test: automation, optimization, and BXD RI mapping

    Get PDF
    Immobility in the tail suspension test (TST) is considered a model of despair in a stressful situation, and acute treatment with antidepressants reduces immobility. Inbred strains of mouse exhibit widely differing baseline levels of immobility in the TST and several quantitative trait loci (QTLs) have been nominated. The labor of manual scoring and various scoring criteria make obtaining robust data and comparisons across different laboratories problematic. Several studies have validated strain gauge and video analysis methods by comparison with manual scoring. We set out to find objective criteria for automated scoring parameters that maximize the biological information obtained, using a video tracking system on tapes of tail suspension tests of 24 lines of the BXD recombinant inbred panel and the progenitor strains C57BL/6J and DBA/2J. The maximum genetic effect size is captured using the highest time resolution and a low mobility threshold. Dissecting the trait further by comparing genetic association of multiple measures reveals good evidence for loci involved in immobility on chromosomes 4 and 15. These are best seen when using a high threshold for immobility, despite the overall better heritability at the lower threshold. A second trial of the test has greater duration of immobility and a completely different genetic profile. Frequency of mobility is also an independent phenotype, with a distal chromosome 1 locus

    Allergic fetal priming leads to developmental, behavioral and neurobiological changes in mice.

    Get PDF
    The state of the mother's immune system during pregnancy has an important role in fetal development and disruptions in the balance of this system are associated with a range of neurologic, neuropsychiatric and neurodevelopmental disorders. Epidemiological and clinical reports reveal various clues that suggest a possible association between developmental neuropsychiatric disorders and family history of immune system dysfunction. Over the past three decades, analogous increases have been reported in both the incidence of neurodevelopmental disorders and immune-related disorders, particularly allergy and asthma, raising the question of whether allergic asthma and characteristics of various neurodevelopmental disorders share common causal links. We used a mouse model of maternal allergic asthma to test this novel hypothesis that early fetal priming with an allergenic exposure during gestation produces behavioral deficits in offspring. Mothers were primed with an exposure to ovalbumin (OVA) before pregnancy, then exposed to either aerosolized OVA or vehicle during gestation. Both male and female mice born to mothers exposed to aerosolized OVA during gestation exhibited altered developmental trajectories in weight and length, decreased sociability and increased marble-burying behavior. Moreover, offspring of OVA-exposed mothers were observed to have increased serotonin transporter protein levels in the cortex. These data demonstrate that behavioral and neurobiological effects can be elicited following early fetal priming with maternal allergic asthma and provide support that maternal allergic asthma may, in some cases, be a contributing factor to neurodevelopmental disorders

    P301S Mutant Human Tau Transgenic Mice Manifest Early Symptoms of Human Tauopathies with Dementia and Altered Sensorimotor Gating

    Get PDF
    Tauopathies are neurodegenerative disorders characterized by the accumulation of abnormal tau protein leading to cognitive and/or motor dysfunction. To understand the relationship between tau pathology and behavioral impairments, we comprehensively assessed behavioral abnormalities in a mouse tauopathy model expressing the human P301S mutant tau protein in the early stage of disease to detect its initial neurological manifestations. Behavioral abnormalities, shown by open field test, elevated plus-maze test, hot plate test, Y-maze test, Barnes maze test, Morris water maze test, and/or contextual fear conditioning test, recapitulated the neurological deficits of human tauopathies with dementia. Furthermore, we discovered that prepulse inhibition (PPI), a marker of sensorimotor gating, was enhanced in these animals concomitantly with initial neuropathological changes in associated brain regions. This finding provides evidence that our tauopathy mouse model displays neurofunctional abnormalities in prodromal stages of disease, since enhancement of PPI is characteristic of amnestic mild cognitive impairment, a transitional stage between normal aging and dementia such as Alzheimer's disease (AD), in contrast with attenuated PPI in AD patients. Therefore, assessment of sensorimotor gating could be used to detect the earliest manifestations of tauopathies exemplified by prodromal AD, in which abnormal tau protein may play critical roles in the onset of neuronal dysfunctions
    corecore