317 research outputs found

    Security and Privacy in Heterogeneous Wireless and Mobile Networks: Challenges and Solutions

    Get PDF
    abstract: The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.Dissertation/ThesisPh.D. Electrical Engineering 201

    TOP-K QUERY DISPENSATION IN SECURE SPATIAL ENVIRONMENT VIA UNTRUSTED LOCATION-BASED SERVICE PROVIDERS

    Get PDF
    IN Collaborative location-based information generation and sharing is considered, which become increasingly popular due to the explosive growth of Internet-capable and location-aware mobile devices. The system consists of a data collector, data contributors, location-based service providers (LBSPs), and system users. The data collector gathers reviews about points-of-interest (POIs) from data contributors, while LBSPs purchase POI data sets from the data collector and allow users to perform spatial top-k queries which ask for the POIs in a certain region and with the highest k ratings for an interested POI attribute. In practice, LBSPs are untrusted and may return fake query results for various bad motives, e.g., in favor of POIs willing to pay. Three novel schemes is used for users to detect fake spatial snapshot and moving top-k query results as an effort to foster the practical deployment and use of the proposed system

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii

    Health Participatory Sensing Networks for Mobile Device Public Health Data Collection and Intervention

    Get PDF
    The pervasive availability and increasingly sophisticated functionalities of smartphones and their connected external sensors or wearable devices can provide new data collection capabilities relevant to public health. Current research and commercial efforts have concentrated on sensor-based collection of health data for personal fitness and personal healthcare feedback purposes. However, to date there has not been a detailed investigation of how such smartphones and sensors can be utilized for public health data collection. Unlike most sensing applications, in the case of public health, capturing comprehensive and detailed data is not a necessity, as aggregate data alone is in many cases sufficient for public health purposes. As such, public health data has the characteristic of being capturable whilst still not infringing privacy, as the detailed data of individuals that may allow re-identification is not needed, but rather only aggregate, de-identified and non-unique data for an individual. These types of public health data collection provide the challenge of the need to be flexible enough to answer a range of public health queries, while ensuring the level of detail returned preserves privacy. Additionally, the distribution of public health data collection request and other information to the participants without identifying the individual is a core requirement. An additional requirement for health participatory sensing networks is the ability to perform public health interventions. As with data collection, this needs to be completed in a non-identifying and privacy preserving manner. This thesis proposes a solution to these challenges, whereby a form of query assurance provides private and secure distribution of data collection requests and public health interventions to participants. While an additional, privacy preserving threshold approach to local processing of data prior to submission is used to provide re-identification protection for the participant. The evaluation finds that with manageable overheads, minimal reduction in the detail of collected data and strict communication privacy; privacy and anonymity can be preserved. This is significant for the field of participatory health sensing as a major concern of participants is most often real or perceived privacy risks of contribution

    Building efficient wireless infrastructures for pervasive computing environments

    Get PDF
    Pervasive computing is an emerging concept that thoroughly brings computing devices and the consequent technology into people\u27s daily life and activities. Most of these computing devices are very small, sometimes even invisible , and often embedded into the objects surrounding people. In addition, these devices usually are not isolated, but networked with each other through wireless channels so that people can easily control and access them. In the architecture of pervasive computing systems, these small and networked computing devices form a wireless infrastructure layer to support various functionalities in the upper application layer.;In practical applications, the wireless infrastructure often plays a role of data provider in a query/reply model, i.e., applications issue a query requesting certain data and the underlying wireless infrastructure is responsible for replying to the query. This dissertation has focused on the most critical issue of efficiency in designing such a wireless infrastructure. In particular, our problem resides in two domains depending on different definitions of efficiency. The first definition is time efficiency, i.e., how quickly a query can be replied. Many applications, especially real-time applications, require prompt response to a query as the consequent operations may be affected by the prior delay. The second definition is energy efficiency which is extremely important for the pervasive computing devices powered by batteries. Above all, our design goal is to reply to a query from applications quickly and with low energy cost.;This dissertation has investigated two representative wireless infrastructures, sensor networks and RFID systems, both of which can serve applications with useful information about the environments. We have comprehensively explored various important and representative problems from both algorithmic and experimental perspectives including efficient network architecture design and efficient protocols for basic queries and complicated data mining queries. The major design challenges of achieving efficiency are the massive amount of data involved in a query and the extremely limited resources and capability each small device possesses. We have proposed novel and efficient solutions with intensive evaluation. Compared to the prior work, this dissertation has identified a few important new problems and the proposed solutions significantly improve the performance in terms of time efficiency and energy efficiency. Our work also provides referrable insights and appropriate methodology to other similar problems in the research community

    Big Data Security (Volume 3)

    Get PDF
    After a short description of the key concepts of big data the book explores on the secrecy and security threats posed especially by cloud based data storage. It delivers conceptual frameworks and models along with case studies of recent technology
    • …
    corecore