122 research outputs found

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times

    CODIE: Controlled Data and Interest Evaluation in Vehicular Named Data Networks

    Full text link
    [EN] Recently, named data networking (NDN) has been proposed as a promising architecture for future Internet technologies. NDN is an extension to the content-centric network (CCN) and is expected to support various applications in vehicular communications [ vehicular NDN (VNDN)]. VNDN basically relies on naming the content rather than using end-to-end device names. In VNDN, a vehicle broadcasts an "Interest" packet for the required "content," regardless of end-to-end connectivity with servers or other vehicles and known as a "consumer." In response, a vehicle with the content replies to the Interest packet with a "Data" packet and named as a "provider." However, the simple VNDN architecture faces several challenges such as consumer/provider mobility and Interest/Data packet(s) forwarding. In VNDN, for the most part, the Data packet is sent along the reverse path of the related Interest packet. However, there is no extensive simulated reference available in the literature to support this argument. In this paper, therefore, we first analyze the propagation behavior of Interest and Data packets in the vehicular ad hoc network (VANET) environment through extensive simulations. Second, we propose the "CODIE" scheme to control the Data flooding/broadcast storm in the naive VNDN. The main idea is to allow the consumer vehicle to start hop counter in Interest packet. Upon receiving this Interest by any potential provider, a data dissemination limit (DDL) value stores the number of hops and a data packet needs to travel back. Simulation results show that CODIE forwards fewer copies of data packets processed (CDPP) while achieving similar interest satisfaction rate (ISR), as compared with the naive VNDN. In addition, we also found that CODIE also minimizes the overall interest satisfaction delay (ISD), respectively.This work was supported by the Ministry of Science, ICT and Future Planning, South Korea, under Grant IITP-2015-H8601-15-1002 of the Convergence Information Technology Research Center supervised by the Institute for Information and Communications Technology Promotion. The review of this paper was coordinated by Editors of CVS. (Corresponding author: Dongkyun Kim.)Ahmed, SH.; Bouk, SH.; Yaqub, MA.; Kim, D.; Song, H.; Lloret, J. (2016). CODIE: Controlled Data and Interest Evaluation in Vehicular Named Data Networks. IEEE Transactions on Vehicular Technology. 65(6):3954-3963. https://doi.org/10.1109/TVT.2016.2558650S3954396365

    Priority-Based Content Delivery in the Internet of Vehicles through Named Data Networking

    Get PDF
    Named Data Networking (NDN) has been recently proposed as a prominent solution for content delivery in the Internet of Vehicles (IoV), where cars equipped with a variety of wireless communication technologies exchange information aimed to support safety, traffic efficiency, monitoring and infotainment applications. The main NDN tenets, i.e., name-based communication and in-network caching, perfectly fit the demands of time- and spatially-relevant content requested by vehicles regardless of their provenance. However, existing vehicular NDN solutions have not been targeted to wisely ensure prioritized traffic treatment based on the specific needs of heterogeneous IoV content types. In this work, we propose a holistic NDN solution that, according to the demands of data traffic codified in NDN content names, dynamically shapes the NDN forwarding decisions to ensure the appropriate prioritization. Specifically, our proposal first selects the outgoing interface(s) (i.e., 802.11, LTE) for NDN packets and then properly tunes the timing of the actual transmissions. Simulation results show that the proposed enhancements succeed in achieving differentiated traffic treatment, while keeping traffic load under control

    Routing and Applications of Vehicular Named Data Networking

    Get PDF
    Vehicular Ad hoc NETwork (VANET) allows vehicles to exchange important informationamong themselves and has become a critical component for enabling smart transportation.In VANET, vehicles are more interested in content itself than from which vehicle the contentis originated. Named Data Networking (NDN) is an Internet architecture that concentrateson what the content is rather than where the content is located. We adopt NDN as theunderlying communication paradigm for VANET because it can better address a plethora ofproblems in VANET, such as frequent disconnections and fast mobility of vehicles. However,vehicular named data networking faces the problem of how to efficiently route interestpackets and data packets. To address the problem, we propose a new geographic routing strategy of applying NDNin vehicular networks with Delay Tolerant Networking (DTN) support, called GeoDTN-NDN. We designed a hybrid routing mechanism for solving the flooding issue of forwardinginterest packets and the disruption problem of delivering data packets. To avoid disruptionscaused by routing packets over less-traveled roads, we develop a new progressive segmentrouting approach that takes into consideration how vehicles are distributed among differentroads, with the goal of favoring well-traveled roads. A novel criterion for determiningprogress of routing is designed to guarantee that the destination will be reached no matterwhether a temporary loop may be formed in the path. We also investigate applications of vehicular named data networking. We categorizethese applications into four types and design an NDN naming scheme for them. We proposea fog-computing based architecture to support the smart parking application, which enablesa driver to find a parking lot with available parking space and make reservation for futureparking need. Finally we describe several future research directions for vehicular nameddata networking
    corecore