245 research outputs found

    A Novel Transmission Scheme for the KK-user Broadcast Channel with Delayed CSIT

    Full text link
    The state-dependent KK-user memoryless Broadcast Channel~(BC) with state feedback is investigated. We propose a novel transmission scheme and derive its corresponding achievable rate region, which, compared to some general schemes that deal with feedback, has the advantage of being relatively simple and thus is easy to evaluate. In particular, it is shown that the capacity region of the symmetric erasure BC with an arbitrary input alphabet size is achievable with the proposed scheme. For the fading Gaussian BC, we derive a symmetric achievable rate as a function of the signal-to-noise ratio~(SNR) and a small set of parameters. Besides achieving the optimal degrees of freedom at high SNR, the proposed scheme is shown, through numerical results, to outperform existing schemes from the literature in the finite SNR regime.Comment: 30 pages, 3 figures, submitted to IEEE Transactions on Wireless Communications (revised version

    Retroactive Anti-Jamming for MISO Broadcast Channels

    Full text link
    Jamming attacks can significantly impact the performance of wireless communication systems. In addition to reducing the capacity, such attacks may lead to insurmountable overhead in terms of re-transmissions and increased power consumption. In this paper, we consider the multiple-input single-output (MISO) broadcast channel (BC) in the presence of a jamming attack in which a subset of the receivers can be jammed at any given time. Further, countermeasures for mitigating the effects of such jamming attacks are presented. The effectiveness of these anti-jamming countermeasures is quantified in terms of the degrees-of-freedom (DoF) of the MISO BC under various assumptions regarding the availability of the channel state information (CSIT) and the jammer state information at the transmitter (JSIT). The main contribution of this paper is the characterization of the DoF region of the two user MISO BC under various assumptions on the availability of CSIT and JSIT. Partial extensions to the multi-user broadcast channels are also presented.Comment: submitted to IEEE Transactions on Information Theor

    On the Degrees-of-freedom of the 3-user MISO Broadcast Channel with Hybrid CSIT

    Full text link
    The 3-user multiple-input single-output (MISO) broadcast channel (BC) with hybrid channel state information at the transmitter (CSIT) is considered. In this framework, there is perfect and instantaneous CSIT from a subset of users and delayed CSIT from the remaining users. We present new results on the degrees of freedom (DoF) of the 3-user MISO BC with hybrid CSIT. In particular, for the case of 2 transmit antennas, we show that with perfect CSIT from one user and delayed CSIT from the remaining two users, the optimal DoF is 5/3. For the case of 3 transmit antennas and the same hybrid CSIT setting, it is shown that a higher DoF of 9/5 is achievable and this result improves upon the best known bound. Furthermore, with 3 transmit antennas, and the hybrid CSIT setting in which there is perfect CSIT from two users and delayed CSIT from the third one, a novel scheme is presented which achieves 9/4 DoF. Our results also reveal new insights on how to utilize hybrid channel knowledge for multi-user scenarios
    corecore