595 research outputs found

    Fault diagnosis for electromechanical drivetrains using a joint distribution optimal deep domain adaptation approach

    Get PDF
    Robust and reliable drivetrain is important for preventing electromechanical (e.g., wind turbine) downtime. In recent years, advanced machine learning (ML) techniques including deep learning have been introduced to improve fault diagnosis performance for electromechanical systems. However, electromechanical systems (e.g., wind turbine) operate in varying working conditions, meaning that the distribution of the test data (in the target domain) is different from the training data used for model training, and the diagnosis performance of an ML method may become downgraded for practical applications. This paper proposes a joint distribution optimal deep domain adaptation approach (called JDDA) based auto-encoder deep classifier for fault diagnosis of electromechanical drivetrains under the varying working conditions. First, the representative features are extracted by the deep auto-encoder. Then, the joint distribution adaptation is used to implement the domain adaptation, so the classifier trained with the source domain features can be used to classify the target domain data. Lastly, the classification performance of the proposed JDDA is tested using two test-rig datasets, compared with three traditional machine learning methods and two domain adaptation approaches. Experimental results show that the JDDA can achieve better performance compared with the reference machine learning, deep learning and domain adaptation approaches

    Domain Adaptation via Alignment of Operation Profile for Remaining Useful Lifetime Prediction

    Full text link
    Effective Prognostics and Health Management (PHM) relies on accurate prediction of the Remaining Useful Life (RUL). Data-driven RUL prediction techniques rely heavily on the representativeness of the available time-to-failure trajectories. Therefore, these methods may not perform well when applied to data from new units of a fleet that follow different operating conditions than those they were trained on. This is also known as domain shifts. Domain adaptation (DA) methods aim to address the domain shift problem by extracting domain invariant features. However, DA methods do not distinguish between the different phases of operation, such as steady states or transient phases. This can result in misalignment due to under- or over-representation of different operation phases. This paper proposes two novel DA approaches for RUL prediction based on an adversarial domain adaptation framework that considers the different phases of the operation profiles separately. The proposed methodologies align the marginal distributions of each phase of the operation profile in the source domain with its counterpart in the target domain. The effectiveness of the proposed methods is evaluated using the New Commercial Modular Aero-Propulsion System (N-CMAPSS) dataset, where sub-fleets of turbofan engines operating in one of the three different flight classes (short, medium, and long) are treated as separate domains. The experimental results show that the proposed methods improve the accuracy of RUL predictions compared to current state-of-the-art DA methods.Comment: 18 pages,11 figure

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    Information Theory and Its Application in Machine Condition Monitoring

    Get PDF
    Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries

    ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ์„ ์œ„ํ•œ ์ •๋ณด ํ™œ์šฉ ๊ทน๋Œ€ํ™” ๊ธฐ๋ฒ• ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ์œค๋ณ‘๋™.๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ์˜ˆ๊ธฐ์น˜ ์•Š์€ ๊ณ ์žฅ์€ ๋งŽ์€ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ ๋ง‰๋Œ€ํ•œ ์‚ฌํšŒ์ , ๊ฒฝ์ œ์  ์†์‹ค์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ‘์ž‘์Šค๋Ÿฐ ๊ณ ์žฅ์„ ๊ฐ์ง€ํ•˜๊ณ  ์˜ˆ๋ฐฉํ•˜์—ฌ ๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ์‹ ๋ขฐ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์˜ ๋ชฉํ‘œ๋Š” ๋Œ€์ƒ ๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ๊ณ ์žฅ ๋ฐœ์ƒ์„ ๊ฐ€๋Šฅํ•œ ๋นจ๋ฆฌ ๊ฐ์ง€ํ•˜๊ณ  ์ง„๋‹จํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ตœ๊ทผ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฒ•์„ ํฌํ•จํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์€ ์ž์œจ์ ์ธ ํŠน์„ฑ์ธ์ž(feature) ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๊ณ  ๋†’์€ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์–ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•จ์— ์žˆ์–ด ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๋ช‡ ๊ฐ€์ง€ ๋ฌธ์ œ์ ๋“ค์ด ์กด์žฌํ•œ๋‹ค. ๋จผ์ €, ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ๊นŠ๊ฒŒ ์Œ“์Œ์œผ๋กœ์จ ํ’๋ถ€ํ•œ ๊ณ„์ธต์  ํŠน์„ฑ์ธ์ž๋“ค์„ ๋ฐฐ์šธ ์ˆ˜ ์žˆ๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์šธ๊ธฐ(gradient) ์ •๋ณด ํ๋ฆ„์˜ ๋น„ํšจ์œจ์„ฑ๊ณผ ๊ณผ์ ํ•ฉ ๋ฌธ์ œ๋กœ ์ธํ•ด ๋ชจ๋ธ์ด ๊นŠ์–ด์งˆ์ˆ˜๋ก ํ•™์Šต์ด ์–ด๋ ต๊ฒŒ ๋œ๋‹ค๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋†’์€ ์„ฑ๋Šฅ์˜ ๊ณ ์žฅ ์ง„๋‹จ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ถฉ๋ถ„ํ•œ ์–‘์˜ ๋ ˆ์ด๋ธ” ๋ฐ์ดํ„ฐ(labeled data)๊ฐ€ ํ™•๋ณด๋ผ์•ผ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ํ˜„์žฅ์—์„œ ์šด์šฉ๋˜๊ณ  ์žˆ๋Š” ๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ๊ฒฝ์šฐ, ์ถฉ๋ถ„ํ•œ ์–‘์˜ ๋ฐ์ดํ„ฐ์™€ ๋ ˆ์ด๋ธ” ์ •๋ณด๋ฅผ ์–ป๋Š” ๊ฒƒ์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ  ์ง„๋‹จ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋ฐ•์‚ฌํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์„ธ๊ฐ€์ง€ ์ •๋ณด ํ™œ์šฉ ๊ทน๋Œ€ํ™” ๊ธฐ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋กœ 1) ๋”ฅ๋Ÿฌ๋‹ ์•„ํ‚คํ…์ฒ˜ ๋‚ด ๊ธฐ์šธ๊ธฐ ์ •๋ณด ํ๋ฆ„์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋”ฅ๋Ÿฌ๋‹ ๊ตฌ์กฐ ์—ฐ๊ตฌ, 2) ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด ๋ฐ ์‚ผ์ค‘ํ•ญ ์†์‹ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถˆ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ ๋ฐ ๋…ธ์ด์ฆˆ ์กฐ๊ฑด ํ•˜ ๊ฐ•๊ฑดํ•˜๊ณ  ์ฐจ๋ณ„์ ์ธ ํŠน์„ฑ์ธ์ž ํ•™์Šต์— ๋Œ€ํ•œ ์—ฐ๊ตฌ, 3) ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์œผ๋กœ๋ถ€ํ„ฐ ๋ ˆ์ด๋ธ” ์ •๋ณด๋ฅผ ์ „์ด์‹œ์ผœ ์‚ฌ์šฉํ•˜๋Š” ๋„๋ฉ”์ธ ์ ์‘ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ๋‚ด ๊ธฐ์šธ๊ธฐ ์ •๋ณด ํ๋ฆ„์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ํ–ฅ์ƒ๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๊ณ„์ธต์˜ ์•„์›ƒํ’‹(feature map)์„ ์ง์ ‘ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ ํ–ฅ์ƒ๋œ ์ •๋ณด ํ๋ฆ„์„ ์–ป์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ ์ง„๋‹จ ๋ชจ๋ธ์„ ํšจ์œจ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋˜ํ•œ ์ฐจ์› ์ถ•์†Œ ๋ชจ๋“ˆ์„ ํ†ตํ•ด ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ์ค„์ž„์œผ๋กœ์จ ํ•™์Šต ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด ๋ฐ ๋ฉ”ํŠธ๋ฆญ ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถˆ์ถฉ๋ถ„ํ•˜๊ณ  ๋…ธ์ด์ฆˆ๊ฐ€ ๋งŽ์€ ์กฐ๊ฑด ํ•˜์—์„œ๋„ ๋†’์€ ๊ณ ์žฅ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ์–ป๊ธฐ ์œ„ํ•ด ๊ฐ•๊ฑดํ•˜๊ณ  ์ฐจ๋ณ„์ ์ธ ํŠน์„ฑ์ธ์ž ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋จผ์ €, ํ’๋ถ€ํ•œ ์†Œ์Šค ๋„๋ฉ”์ธ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ํ›ˆ๋ จ๋œ ์‚ฌ์ „ํ•™์Šต๋ชจ๋ธ์„ ํƒ€๊ฒŸ ๋„๋ฉ”์ธ์œผ๋กœ ์ „์ดํ•ด ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ฐ•๊ฑดํ•œ ์ง„๋‹จ ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, semi-hard ์‚ผ์ค‘ํ•ญ ์†์‹ค ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ฐ ์ƒํƒœ ๋ ˆ์ด๋ธ”์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐ๊ฐ€ ๋” ์ž˜ ๋ถ„๋ฆฌ๋˜๋„๋ก ํ•ด์ฃผ๋Š” ํŠน์„ฑ์ธ์ž๋ฅผ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์ง€ ์•Š์€(unlabeled) ๋Œ€์ƒ ๋„๋ฉ”์ธ์—์„œ์˜ ๊ณ ์žฅ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ๋ ˆ์ด๋ธ” ์ •๋ณด ์ „์ด ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋Œ€์ƒ ๋„๋ฉ”์ธ์—์„œ์˜ ๊ณ ์žฅ ์ง„๋‹จ ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค๋ฅธ ์†Œ์Šค ๋„๋ฉ”์ธ์—์„œ ์–ป์€ ๋ ˆ์ด๋ธ” ์ •๋ณด๊ฐ€ ์ „์ด๋˜์–ด ํ™œ์šฉ๋œ๋‹ค. ๋™์‹œ์— ์ƒˆ๋กญ๊ฒŒ ๊ณ ์•ˆํ•œ ์˜๋ฏธ๋ก ์  ํด๋Ÿฌ์Šคํ„ฐ๋ง ์†์‹ค(semantic clustering loss)์„ ์—ฌ๋Ÿฌ ํŠน์„ฑ์ธ์ž ์ˆ˜์ค€์— ์ ์šฉํ•จ์œผ๋กœ์จ ์ฐจ๋ณ„์ ์ธ ๋„๋ฉ”์ธ ๋ถˆ๋ณ€ ๊ธฐ๋Šฅ์„ ํ•™์Šตํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋„๋ฉ”์ธ ๋ถˆ๋ณ€ ํŠน์„ฑ์„ ๊ฐ€์ง€๋ฉฐ ์˜๋ฏธ๋ก ์ ์œผ๋กœ ์ž˜ ๋ถ„๋ฅ˜๋˜๋Š” ํŠน์„ฑ์ธ์ž๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์Œ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค.Unexpected failures of mechanical systems can lead to substantial social and financial losses in many industries. In order to detect and prevent sudden failures and to enhance the reliability of mechanical systems, significant research efforts have been made to develop data-driven fault diagnosis techniques. The purpose of fault diagnosis techniques is to detect and identify the occurrence of abnormal behaviors in the target mechanical systems as early as possible. Recently, deep learning (DL) based fault diagnosis approaches, including the convolutional neural network (CNN) method, have shown remarkable fault diagnosis performance, thanks to their autonomous feature learning ability. Still, there are several issues that remain to be solved in the development of robust and industry-applicable deep learning-based fault diagnosis techniques. First, by stacking the neural network architectures deeper, enriched hierarchical features can be learned, and therefore, improved performance can be achieved. However, due to inefficiency in the gradient information flow and overfitting problems, deeper models cannot be trained comprehensively. Next, to develop a fault diagnosis model with high performance, it is necessary to obtain sufficient labeled data. However, for mechanical systems that operate in real-world environments, it is not easy to obtain sufficient data and label information. Consequently, novel methods that address these issues should be developed to improve the performance of deep learning based fault diagnosis techniques. This dissertation research investigated three research thrusts aimed toward maximizing the use of information to improve the performance of deep learning based fault diagnosis techniques, specifically: 1) study of the deep learning structure to enhance the gradient information flow within the architecture, 2) study of a robust and discriminative feature learning method under insufficient and noisy data conditions based on parameter transfer and triplet loss, and 3) investigation of a domain adaptation based fault diagnosis method that propagates the label information across different domains. The first research thrust suggests an advanced CNN-based architecture to improve the gradient information flow within the deep learning model. By directly connecting the feature maps of different layers, the diagnosis model can be trained efficiently thanks to enhanced information flow. In addition, the dimension reduction module also can increase the training efficiency by significantly reducing the number of trainable parameters. The second research thrust suggests a parameter transfer and metric learning based fault diagnosis method. The proposed approach facilitates robust and discriminative feature learning to enhance fault diagnosis performance under insufficient and noisy data conditions. The pre-trained model trained using abundant source domain data is transferred and used to develop a robust fault diagnosis method. Moreover, a semi-hard triplet loss function is adopted to learn the features with high separability, according to the class labels. Finally, the last research thrust proposes a label information propagation strategy to increase the fault diagnosis performance in the unlabeled target domain. The label information obtained from the source domain is transferred and utilized for developing fault diagnosis methods in the target domain. Simultaneously, the newly devised semantic clustering loss is applied at multiple feature levels to learn discriminative, domain-invariant features. As a result, features that are not only semantically well-clustered but also domain-invariant can be effectively learned.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 3 1.3 Dissertation Layout 6 Chapter 2 Technical Background and Literature Review 8 2.1 Fault Diagnosis Techniques for Mechanical Systems 8 2.1.1 Fault Diagnosis Techniques 10 2.1.2 Deep Learning Based Fault Diagnosis Techniques 15 2.2 Transfer Learning 22 2.3 Metric Learning 28 2.4 Summary and Discussion 30 Chapter 3 Direct Connection Based Convolutional Neural Network (DC-CNN) for Fault Diagnosis 31 3.1 Directly Connected Convolutional Module 33 3.2 Dimension Reduction Module 34 3.3 Input Vibration Image Generation 36 3.4 DC-CNN-Based Fault Diagnosis Method 40 3.5 Experimental Studies and Results 45 3.5.1 Experiment and Data Description 45 3.5.2 Compared Methods 48 3.5.3 Diagnosis Performance Results 51 3.5.4 The Number of Trainable Parameters 56 3.5.5 Visualization of the Learned Features 58 3.5.6 Robustness of Diagnosis Performance 62 3.6 Summary and Discussion 67 Chapter 4 Robust and Discriminative Feature Learning for Fault Diagnosis Under Insufficient and Noisy Data Conditions 68 4.1 Parameter transfer learning 70 4.2 Robust Feature Learning Based on the Pre-trained model 72 4.3 Discriminative Feature Learning Based on the Triplet loss 77 4.4 Robust and Discriminative Feature Learning for Fault Diagnosis 80 4.5 Experimental Studies and Results 84 4.5.1 Experiment and Data Description 84 4.5.2 Compared Methods 85 4.5.3 Experimental Results Under Insufficient Data Conditions 86 4.5.4 Experimental Results Under Noisy Data Conditions 92 4.6 Summary and Discussion 95 Chapter 5 A Domain Adaptation with Semantic Clustering (DASC) Method for Fault Diagnosis 96 5.1 Unsupervised Domain Adaptation 101 5.2 CNN-based Diagnosis Model 104 5.3 Learning of Domain-invariant Features 105 5.4 Domain Adaptation with Semantic Clustering 107 5.5 Proposed DASC-based Fault Diagnosis Method 109 5.6 Experimental Studies and Results 114 5.6.1 Experiment and Data Description 114 5.6.2 Compared Methods 117 5.6.3 Scenario I: Different Operating Conditions 118 5.6.4 Scenario II: Different Rotating Machinery 125 5.6.5 Analysis and Discussion 131 5.7 Summary and Discussion 140 Chapter 6 Conclusion 141 6.1 Contributions and Significance 141 6.2 Suggestions for Future Research 143 References 146 ๊ตญ๋ฌธ ์ดˆ๋ก 154๋ฐ•

    Wasserstein Distance based Deep Adversarial Transfer Learning for Intelligent Fault Diagnosis

    Full text link
    The demand of artificial intelligent adoption for condition-based maintenance strategy is astonishingly increased over the past few years. Intelligent fault diagnosis is one critical topic of maintenance solution for mechanical systems. Deep learning models, such as convolutional neural networks (CNNs), have been successfully applied to fault diagnosis tasks for mechanical systems and achieved promising results. However, for diverse working conditions in the industry, deep learning suffers two difficulties: one is that the well-defined (source domain) and new (target domain) datasets are with different feature distributions; another one is the fact that insufficient or no labelled data in target domain significantly reduce the accuracy of fault diagnosis. As a novel idea, deep transfer learning (DTL) is created to perform learning in the target domain by leveraging information from the relevant source domain. Inspired by Wasserstein distance of optimal transport, in this paper, we propose a novel DTL approach to intelligent fault diagnosis, namely Wasserstein Distance based Deep Transfer Learning (WD-DTL), to learn domain feature representations (generated by a CNN based feature extractor) and to minimize the distributions between the source and target domains through adversarial training. The effectiveness of the proposed WD-DTL is verified through 3 transfer scenarios and 16 transfer fault diagnosis experiments of both unsupervised and supervised (with insufficient labelled data) learning. We also provide a comprehensive analysis of the network visualization of those transfer tasks
    • โ€ฆ
    corecore