112 research outputs found

    Reparameterization of ruled surfaces: toward generating smooth jerk-minimized toolpaths for multi-axis flank CNC milling

    Get PDF
    This paper presents a novel jerk minimization algorithm in the context of multi-axis flank CNC machining. The toolpath of the milling axis in a flank milling process, a ruled surface, is reparameterized by a B-spline function, whose control points and knot vector are unknowns in an optimization-based framework. The total jerk of the tool's motion is minimized, implying the tool is moving as smooth as possible, without changing the geometry of the given toolpath. Our initialization stage stems from measuring the ruling distance metric (RDM) of the ruled surface. We show on several examples that this initialization reliably finds close initial guesses of jerk-minimizers and is also computationally efficient. The applicability of the presented approach is illustrated by some practical case studies.RYC-2017-2264

    Rationalization with ruled surfaces in architecture

    Get PDF

    Assistive control for non-contact machining of random shaped contours

    Get PDF
    Recent achievements in robotics and automation technology has opened the door towards different machining methodologies based on material removal. Considering the non force feedback nature of non-contact machining methods, careful attention on motion control design is a primary requirement for successful achievement of precise cutting both in machining and in surgery processes. This thesis is concerned with the design of pre-processing methods and motion control techniques to provide both automated and human-assistive non-contact machining of random and complex shaped contours. In that sense, the first part of the thesis focuses on extraction of contours and generation of reference trajectories or constraints for the machining system. Based on generated trajectories, two different control schemes are utilized for high precision automated machining. In the first scheme, preview control is adopted for enhancing the tracking performance. In the second scheme, control action is generated based on direct computation of contouring error in the operational space by introducing a new coordinate frame moving with the reference contour. Further, non-contact machining is extended for realization in a master/slave telerobotic framework to enable manual remote cutting by a human operator. With the proposed approach, the human operator (i.e. a surgeon) is limited to conduct motion within a desired virtual constraint and is equipped with the ability of adjusting the cutting depth over a that contour providing advantage for laser surgery applications. The proposed framework is experimentally tested and results of the experiments prove the applicability of proposed motion control schemes and show the validity of contributions made in the context of thesis

    Selected Papers from IEEE ICASI 2019

    Get PDF
    The 5th IEEE International Conference on Applied System Innovation 2019 (IEEE ICASI 2019, https://2019.icasi-conf.net/), which was held in Fukuoka, Japan, on 11–15 April, 2019, provided a unified communication platform for a wide range of topics. This Special Issue entitled “Selected Papers from IEEE ICASI 2019” collected nine excellent papers presented on the applied sciences topic during the conference. Mechanical engineering and design innovations are academic and practical engineering fields that involve systematic technological materialization through scientific principles and engineering designs. Technological innovation by mechanical engineering includes information technology (IT)-based intelligent mechanical systems, mechanics and design innovations, and applied materials in nanoscience and nanotechnology. These new technologies that implant intelligence in machine systems represent an interdisciplinary area that combines conventional mechanical technology and new IT. The main goal of this Special Issue is to provide new scientific knowledge relevant to IT-based intelligent mechanical systems, mechanics and design innovations, and applied materials in nanoscience and nanotechnology

    Computational Techniques to Predict Orthopaedic Implant Alignment and Fit in Bone

    Get PDF
    Among the broad palette of surgical techniques employed in the current orthopaedic practice, joint replacement represents one of the most difficult and costliest surgical procedures. While numerous recent advances suggest that computer assistance can dramatically improve the precision and long term outcomes of joint arthroplasty even in the hands of experienced surgeons, many of the joint replacement protocols continue to rely almost exclusively on an empirical basis that often entail a succession of trial and error maneuvers that can only be performed intraoperatively. Although the surgeon is generally unable to accurately and reliably predict a priori what the final malalignment will be or even what implant size should be used for a certain patient, the overarching goal of all arthroplastic procedures is to ensure that an appropriate match exists between the native and prosthetic axes of the articulation. To address this relative lack of knowledge, the main objective of this thesis was to develop a comprehensive library of numerical techniques capable to: 1) accurately reconstruct the outer and inner geometry of the bone to be implanted; 2) determine the location of the native articular axis to be replicated by the implant; 3) assess the insertability of a certain implant within the endosteal canal of the bone to be implanted; 4) propose customized implant geometries capable to ensure minimal malalignments between native and prosthetic axes. The accuracy of the developed algorithms was validated through comparisons performed against conventional methods involving either contact-acquired data or navigated implantation approaches, while various customized implant designs proposed were tested with an original numerical implantation method. It is anticipated that the proposed computer-based approaches will eliminate or at least diminish the need for undesirable trial and error implantation procedures in a sense that present error-prone intraoperative implant insertion decisions will be at least augmented if not even replaced by optimal computer-based solutions to offer reliable virtual “previews” of the future surgical procedure. While the entire thesis is focused on the elbow as the most challenging joint replacement surgery, many of the developed approaches are equally applicable to other upper or lower limb articulations

    A virus-evolutionary, multi-objective intelligent tool path optimisation methodology for sculptured surface CNC machining

    Get PDF
    Today’s production environment faces multiple challenges involving fast adaptation to modern technologies, flexibility in accommodating them to current industrial practices and cost reduction through automating repetitive tasks. At the same time the requirements for manufacturing functional, aesthetic and versatile products, turn these challenges to clear and present industrial problems that need to be solved by delivering at least semi-optimal results. Even though sculptured surfaces can meet such requirements when it comes to product design, a critical problem exists in terms of their machining operations owing to their arbitrary nature and complex geometrical features as opposed to prismatic surfaces. Current approaches for generating tool paths in computer-aided manufacturing (CAM) systems are still based on human intervention as well as trial-and-error experiments. These approaches neither can provide optimal tool paths nor can they establish a generic approach for an advantageous and profitable sculptured surface machining (SSM). Major goal of this PhD thesis is the development of an intelligent, automated and generic methodology for generating optimal 5-axis CNC tool paths to machine complex sculptured surfaces. The methodology considers the tool path parameters “cutting tool”, “stepover”, “lead angle”, “tilt angle” and “maximum discretisation step” as the independent variables for optimisation whilst the mean machining error, its mean distribution on the sculptured surface and the minimum number of tool positions are the crucial optimisation criteria formulating the generalized multi-objective sculptured surface CNC machining optimisation problem. The methodology is a two-fold programming framework comprising a virus-evolutionary genetic algorithm as the methodology’s intelligent part for performing the multi-objective optimisation and an automation function for driving the algorithm through its argument-passing elements directly related to CAM software, i.e., tool path computation utilities, objects for programmatically retrieving tool path parameters’ inputs, etc. These two modules (the intelligent algorithm and the automation function) interact and exchange information as needed towards the achievement of creating globally optimal tool paths for any sculptured surface. The methodology has been validated through simulation experiments and actual machining operations conducted to benchmark sculptured surfaces and corresponding results have been compared to those available from already existing tool path generation/optimisation approaches in the literature. The results have proven the methodology’s practical merits as well as its effectiveness for maintaining quality and productivity in sculptured surface 5-axis CNC machining

    Fabricate

    Get PDF
    Bringing together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation, Fabricate is a triennial international conference, now in its third year (ICD, University of Stuttgart, April 2017). Each year it produces a supporting publication, to date the only one of its kind specialising in Digital Fabrication. The 2017 edition features 32 illustrated articles on built projects and works in progress from academia and practice, including contributions from leading practices such as Foster + Partners, Zaha Hadid Architects, Arup, and Ron Arad, and from world-renowned institutions including ICD Stuttgart, Harvard, Yale, MIT, Princeton University, The Bartlett School of Architecture (UCL) and the Architectural Association

    Atlas of sensations - on sensibilities in a computational design practice

    Get PDF
    The driving force behind the body of work of SPAN is defined by the application of advanced computational design methodologies. This dissertation can be understood as a cartography (in the best tradition of an atlas) of the work of the practice from its founding year 2003 until 2017 - a period profoundly shaped by the progress made in technological advances. These technological means allow SPAN to discuss architectural project through a series of different lenses such as conceptualization, planning, fabrication to the maintenance of the designed objects, through the use of emerging technical opportunities wither this be the interrogation of novel geometries (Blocks, Ore, Barcelona Recursion), computational methods of rationalization (Expo Façade) or advanced methods of fabrication (Robots, as for example in Plato's Columns). In a parallel move between the necessities and desires of the practice and the ambitious studios and seminars in academia, novel toolsets and design concepts are developed to address contemporary architectural problems. These areas can be understood as different territories of interrogation, forming a landscape of opportunities, or as we describe it internally in our office: a design ecology. The interrogation of these distinct territories, and the unique way in which SPAN assembles those various elements to something larger than its parts, is what constitutes part of SPAN's contribution to the discipline. Apart from projects and visual work, SPAN´s contribution to discourse started early with papers to conferences such as IASS (International Association for Shell and Spatial Structures) in 2007, Design Modeling Symposium in 2008, and ACADIA (Association for Computer Aided Design in Architecture) in 2008, which included ideas such as the application of tissue engineering in architecture, aspects of artifact and affect, fabrication, and considerations on architectural details in complex curved geometries. Within the Atlas of Sensations, a second ecology is defined by the contribution to the paradigm shift in the discourse from the continuous to the hyper-articulated surface, which contains an additional level of information. A surface, which describes architectural properties through the deep pochés, folds, joints, niches, and arches it generates.  The question is: How does this shift in the conception of architecture affect the qualities of the design, and by extension the context these objects construct? To further investigate this question the work focuses on one part of the practice's design ecology: design sensibilities. In order to interrogate this question, the presented work observes these moments in SPAN's practice through the lens of geometrical properties. Ultimately resulting in thoughts on Postdigital design ecologies that discuss aspects of design agency in our contemporary age
    • …
    corecore