4,760 research outputs found

    Issues and Challenges for Network Virtualisation

    Get PDF
    In recent years, network virtualisation has been of great interest to researchers, being a relatively new and major paradigm in networking. This has been reflected in the IT industry where many virtualisation solutions are being marketed as revolutionary and purchased by enterprises to exploit these promised performances. Adversely, there are certain drawbacks like security, isolation and others that have conceded the network virtualisation. In this study, an investigation of the different state-of-the-art virtualisation technologies, their issues and challenges are addressed and besides, a guideline for a quintessential Network Virtualisation Environment (NVE) is been proposed. A systematic review was effectuated on selectively picked research papers and technical reports. Moreover a comparative study is performed on different Network Virtualisation technologies which include features like security, isolation, stability, convergence, outlay, scalability, robustness, manageability, resource management, programmability, flexibility, heterogeneity, legacy Support, and ease of deployment. The virtualisation technologies comprise Virtual Private Network (VPN), Virtual Local Area Network (VLAN), Virtual Extensible Local Area Network (VXLAN), Software Defined Networking (SDN) and Network Function Virtualisation (NFV). Conclusively the results exhibited the disparity as to the gaps of creating an ideal network virtualisation model which can be circumvented using these as a benchmark

    A novel deep learning architecture for drug named entity recognition

    Get PDF
    Drug named entity recognition (DNER) becomes the prerequisite of other medical relation extraction systems. Existing approaches to automatically recognize drug names includes rule-based, machine learning (ML) and deep learning (DL) techniques. DL techniques have been verified to be the state-of-the-art as it is independent of handcrafted features. The previous DL methods based on word embedding input representation uses the same vector representation for an entity irrespective of its context in different sentences and hence could not capture the context properly. Also, identification of the n-gram entity is a challenge. In this paper, a novel architecture is proposed that includes a sentence embedding layer that works on the entire sentence to efficiently capture the context of an entity. A hybrid model that comprises a stacked bidirectional long short-term memory (Bi-LSTM) with residual LSTM has been designed to overcome the limitations and to upgrade the performance of the model. We have contrasted the achievement of our proposed approach with other DNER models and the percentage of improvements of the proposed model over LSTM-conditional random field (CRF), LIU and WBI with respect to micro-average F1-score are 11.17, 8.8 and 17.64 respectively. The proposed model has also shown promising result in recognizing 2- and 3-gram entities

    A channel model and coding for vehicle to vehicle communication based on a developed V-SCME

    Get PDF
    Over the recent years, VANET communication has attracted a lot of attention due to its potential in facilitating the implementation of 'Intelligent Transport System'. Vehicular applications need to be completely tested before deploying them in the real world. In this context, VANET simulations would be preferred in order to evaluate and validate the proposed model, these simulations are considered inexpensive compared to the real world (hardware) tests. The development of a more realistic simulation environment for VANET is critical in ensuring high performance. Any environment required for simulating VANET, needs to be more realistic and include a precise representation of vehicle movements, as well as passing signals among different vehicles. In order to achieve efficient results that reflect the reality, a high computational power during the simulation is needed which consumes a lot of time. The existing simulation tools could not simulate the exact physical conditions of the real world, so results can be viewed as unsatisfactory when compared with real world experiments. This thesis describes two approaches to improve such vehicle to vehicle communication. The first one is based on the development of an already existing approach, the Spatial Channel Model Extended (SCME) for cellular communication which is a verified, validated and well-established communication channel model. The new developed model, is called Vehicular - Spatial Channel Model Extended (V-SCME) and can be utilised for Vehicle to Vehicle communication. V-SCME is a statistical channel model which was specifically developed and configured to satisfy the requirements of the highly dynamic network topology such as vehicle to vehicle communication. V-SCME provides a precise channel coefficients library for vehicle to vehicle communication for use by the research community, so as to reduce the overall simulation time. The second approach is to apply V-BLAST (MIMO) coding which can be implemented with vehicle to vehicle communication and improve its performance over the V-SCME. The V- SCME channel model with V-BLAST coding system was used to improve vehicle to vehicle physical layer performance, which is a novel contribution. Based on analysis and simulations, it was found that the developed channel model V-SCME is a good solution to satisfy the requirements of vehicle to vehicle communication, where it has considered a lot of parameters in order to obtain more realistic results compared with the real world tests. In addition, V-BLAST (MIMO) coding with the V-SCME has shown an improvement in the bit error rate. The obtained results were intensively compared with other types of MIMO coding

    Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses

    Full text link
    The ongoing deployment of the fifth generation (5G) wireless networks constantly reveals limitations concerning its original concept as a key driver of Internet of Everything (IoE) applications. These 5G challenges are behind worldwide efforts to enable future networks, such as sixth generation (6G) networks, to efficiently support sophisticated applications ranging from autonomous driving capabilities to the Metaverse. Edge learning is a new and powerful approach to training models across distributed clients while protecting the privacy of their data. This approach is expected to be embedded within future network infrastructures, including 6G, to solve challenging problems such as resource management and behavior prediction. This survey article provides a holistic review of the most recent research focused on edge learning vulnerabilities and defenses for 6G-enabled IoT. We summarize the existing surveys on machine learning for 6G IoT security and machine learning-associated threats in three different learning modes: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G IoT intelligence. Moreover, we provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, including backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a side-by-side comparison of the state-of-the-art defense methods against edge learning vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    • …
    corecore