287 research outputs found

    Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multi-wavelets

    Get PDF
    A new time-varying autoregressive (TVAR) modelling approach is proposed for nonstationary signal processing and analysis, with application to EEG data modelling and power spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of the TVAR model are represented using a novel multi-wavelet decomposition scheme. The time-varying modelling problem is then reduced to regression selection and parameter estimation, which can be effectively resolved by using a forward orthogonal regression algorithm. Two examples, one for an artificial signal and another for an EEG signal, are given to show the effectiveness and applicability of the new TVAR modelling method

    Time-varying model identification for time-frequency feature extraction from EEG data

    Get PDF
    A novel modelling scheme that can be used to estimate and track time-varying properties of nonstationary signals is investigated. This scheme is based on a class of time-varying AutoRegressive with an eXogenous input (ARX) models where the associated time-varying parameters are represented by multi-wavelet basis functions. The orthogonal least square (OLS) algorithm is then applied to refine the model parameter estimates of the time-varying ARX model. The main features of the multi-wavelet approach is that it enables smooth trends to be tracked but also to capture sharp changes in the time-varying process parameters. Simulation studies and applications to real EEG data show that the proposed algorithm can provide important transient information on the inherent dynamics of nonstationary processes

    Identification of nonlinear time-varying systems using an online sliding-window and common model structure selection (CMSS) approach with applications to EEG

    Get PDF
    The identification of nonlinear time-varying systems using linear-in-the-parameter models is investigated. A new efficient Common Model Structure Selection (CMSS) algorithm is proposed to select a common model structure. The main idea and key procedure is: First, generate K 1 data sets (the first K data sets are used for training, and theK 1 th one is used for testing) using an online sliding window method; then detect significant model terms to form a common model structure which fits over all the K training data sets using the new proposed CMSS approach. Finally, estimate and refine the time-varying parameters for the identified common-structured model using a Recursive Least Squares (RLS) parameter estimation method. The new method can effectively detect and adaptively track the transient variation of nonstationary signals. Two examples are presented to illustrate the effectiveness of the new approach including an application to an EEG data set

    A parametric time frequency-conditional Granger causality method using ultra-regularized orthogonal least squares and multiwavelets for dynamic connectivity analysis in EEGs

    Get PDF
    Objective: This study proposes a new para-metric TF-CGC (time-frequency conditional Granger causality) method for high-precision connectivity analysis over time and frequency domain in multivariate coupling nonstationary systems, and applies it to source EEG signals to reveal dynamic interaction patterns in oscillatory neo-cortical sensorimotor networks. Methods: The Geweke's spectral measure is combined with the TVARX (time-varying autoregressive with exogenous input) model-ling approach, which uses multiwavelet-based ul-tra-regularized orthogonal least squares (UROLS) algo-rithm aided by APRESS (adjustable prediction error sum of squares), to obtain high-resolution time-varying CGC representations. The UROLS-APRESS algorithm, which adopts both the regularization technique and the ultra-least squares criterion to measure not only the signal themselves but also the weak derivatives of them, is a novel powerful method in constructing time-varying models with good generalization performance, and can accurately track smooth and fast changing causalities. The generalized measurement based on CGC decomposition is able to eliminate indirect influences in multivariate systems. Re-sults: The proposed method is validated on two simulations and then applied to source level motor imagery (MI) EEGs, where the predicted distributions are well recovered with high TF precision, and the detected connectivity patterns of MI-EEGs are physiologically interpretable and yield new insights into the dynamical organization of oscillatory cor-tical networks. Conclusion: Experimental results confirm the effectiveness of the TF-CGC method in tracking rapidly varying causalities of EEG-based oscillatory networks. Significance: The novel TF-CGC method is expected to provide important information of neural mechanisms of perception and cognition

    A multiple beta wavelet-based locally regularized ultraorthogonal forward regression algorithm for time-varying system identification with applications to EEG

    Get PDF
    Time-varying (TV) nonlinear systems widely exist in various fields of engineering and science. Effective identification and modeling of TV systems is a challenging problem due to the nonstationarity and nonlinearity of the associated processes. In this paper, a novel parametric modeling algorithm is proposed to deal with this problem based on a TV nonlinear autoregressive with exogenous input (TV-NARX) model. A new class of multiple beta wavelet (MBW) basis functions is introduced to represent the TV coefficients of the TV-NARX model to enable the tracking of both smooth trends and sharp changes of the system behavior. To produce a parsimonious model structure, a locally regularized ultraorthogonal forward regression (LRUOFR) algorithm aided by the adjustable prediction error sum of squares (APRESS) criterion is investigated for sparse model term selection and parameter estimation. Simulation studies and a real application to EEG data show that the proposed MBW-LRUOFR algorithm can effectively capture the global and local features of nonstationary systems and obtain an optimal model, even for signals contaminated with severe colored noise

    Modelling and Prediction of Global Magnetic Disturbance in Near-Earth Space: a Case Study for Kp Index using NARX Models

    Get PDF
    Severe geomagnetic disturbances can be hazardous for mod-ern technological systems. The reliable forecast of parameters related to thestate of the magnetosphere can facilitate the mitigation of adverse effects ofspace weather. This study is devoted to the modeling and forecasting of theevolution of the Kp index related to global geomagnetic disturbances. Through-out this work the Nonlinear AutoRegressive with eXogenous inputs (NARX)methodology is applied. Two approaches are presented: i) a recursive slid-ing window approach, and ii) a direct approach. These two approaches arestudied separately and are then compared to evaluate their performances.It is shown that the direct approach outperforms the recursive approach, butboth tend to produce predictions slightly biased from the true values for lowand high disturbances

    Neural network-based parametric system identification: a review

    Get PDF
    Parametric system identification, which is the process of uncovering the inherent dynamics of a system based on the model built with the observed inputs and outputs data, has been intensively studied in the past few decades. Recent years have seen a surge in the use of neural networks (NNs) in system identification, owing to their high approximation capability, less reliance on prior knowledge, and the growth of computational power. However, there is a lack of review on neural network modelling in the paradigm of parametric system identification, particularly in the time domain. This article discussed the connection in principle between conventional parametric models and three types of NNs including Feedforward Neural Networks, Recurrent Neural Networks and Encoder-Decoder. Then it reviewed the advantages and limitations of related research in addressing two major challenges of parametric system identification, including the model interpretability and modelling with nonstationary realisations. Finally, new challenges and future trends in neural network-based parametric system identification are presented in this article

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference
    • …
    corecore